Mostrar el registro sencillo del ítem
Analytical formulation of the stiffness method for 2d reticular structures using green functions
dc.creator | Molina-Villegas J.C. | |
dc.creator | Giraldo H.N.D. | |
dc.creator | Ochoa A.F.A. | |
dc.date | 2020 | |
dc.date.accessioned | 2021-02-05T14:57:54Z | |
dc.date.available | 2021-02-05T14:57:54Z | |
dc.identifier.issn | 2131315 | |
dc.identifier.uri | http://hdl.handle.net/11407/5918 | |
dc.description | Green functions (F.G.) are defined as the response of a medium to a unit point load and are widely used to solve boundary value problems. Unfortunately, in structural analysis, its use is limited and they are only used indirectly and with another name in the calculation of influence lines and in the formulation of the virtual work method. This article presents the Green functions stiffness method, which is a novel methodology to obtain the analytical or exact response of two dimensional frames, which mixes the stiffnes method and the Green functions, the latter used for the calculation of displacement fields. In particular, the formulation will be carried out for bar elements (subjected to axial force), beam elements (subjected to shear force and bending moment), beam over flexible foundation elements (subjected to shear force and bending moment) and two dimensional frames (subjected to axial force, cutting force and bending moment). This formulation has as its main property that it can be used to compute the analytic reponse for any external load distribution and minimizes the number of elements to be used in discretizations. In addition, the equivalence of this formulation with that obtained by an “exact” implementation of the finite element method is presented. © 2020, Scipedia S.L. All rights reserved. | |
dc.language.iso | spa | |
dc.publisher | Scipedia S.L. | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092524795&doi=10.23967%2fJ.RIMNI.2020.09.004&partnerID=40&md5=fce7c5d0549e50f1528aaaac2f4d3cf5 | |
dc.source | Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria | |
dc.subject | Finite element method | spa |
dc.subject | Green functions | spa |
dc.subject | Mixed finite elements | spa |
dc.subject | Stiffness method | spa |
dc.title | Analytical formulation of the stiffness method for 2d reticular structures using green functions | |
dc.type | Article | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Ingeniería Civil | spa |
dc.identifier.doi | 10.23967/J.RIMNI.2020.09.004 | |
dc.relation.citationvolume | 36 | |
dc.relation.citationissue | 3 | |
dc.relation.citationstartpage | 1 | |
dc.relation.citationendpage | 52 | |
dc.publisher.faculty | Facultad de Ingenierías | spa |
dc.affiliation | Molina-Villegas, J.C., Universidad de Medellín, Universidad Nacional de Colombia, Colombia | |
dc.affiliation | Giraldo, H.N.D., Departamento de Ingeniería Civil, Universidad Nacional de Colombia, Facultad de Minas, Colombia | |
dc.affiliation | Ochoa, A.F.A., Departamento de Ingeniería Civil, Universidad Nacional de Colombia, Facultad de Minas, Colombia | |
dc.relation.references | Challis, Lawrie, Sheard, Fred, The green of Green functions (2003) Physics Today, 56 (12), pp. 41-46 | |
dc.relation.references | Duffy, Dean G., (2015) Green’s functions with applications, , Chapman and Hall/CRC | |
dc.relation.references | Banerjee, PK, Butterfield, R., (1981) Boundary Element Methods in Engineering Science, , McGraw-Hill, New York | |
dc.relation.references | Sánchez-Sesma, F. J., Ramos-Martínez, J., Campillo, M., An indirect boundary element method applied to simulate the seismic response of alluvial valleys for incident P, S and Rayleigh waves (1993) Earthquake engineering & structural dynamics, 22 (4), pp. 279-295 | |
dc.relation.references | Fairweather, G., Karageorghis, A., Martin, P.A., The method of fundamental solutions for scattering and radiation problems (2003) Engineering Analysis with Boundary Elements, 27 (7), pp. 759-769 | |
dc.relation.references | Thomson, William T., Transmission of elastic waves through a stratified solid medium (1950) Journal of applied Physics, 21 (2), pp. 89-93 | |
dc.relation.references | Boussinesq, Joseph, (1885) Application des potentiels a l'étude de l'équilibre et du mouvement des solides élastiques, , Gauthier-Villars | |
dc.relation.references | Cerruti, Valentino, Ricerche intorno all'equilibrio de'corpi elastici isotropi: memoria (1882), Coi tipi del Salviucci | |
dc.relation.references | Mindlin, R.D., Force at a Point in the Interior of a Semi-Infinite Solid (1936) Physics, 7 (5), pp. 195-202 | |
dc.relation.references | Stokes, George Gebriel, On dynamical theory of diffraction (1849) Transactions of the Cambridge Philosophical Society, 9, pp. 1-48 | |
dc.relation.references | Lamb, H., On the propagation of tremors over the surface of an elastic solid (1904) Philosophical Transactions of the Royal Society of London, 203, pp. 1-42 | |
dc.relation.references | Chao, C.C., Dynamical response of an elastic half-space to tangential surface loadings (1960) Journal of Applied Mechanics, 27, p. 559 | |
dc.relation.references | Kausel, E., (2006) Fundamental solutions in elastodynamics: a compendium, , Cambridge University Press | |
dc.relation.references | Aki, K., Richards, P.G., (2002) Quantitative seismology, , Univ Science Books | |
dc.relation.references | Colunga, Arturo Tena, (2007) Análisis de estructuras con métodos matriciales, , Limusa | |
dc.relation.references | McCormac, Jack C., (2007) Structural Analysis: using classical and matrix methods, , Wiley Hoboken, NJ | |
dc.relation.references | Kassimali, Aslam, (2012) Matrix analysis of structures SI version, , Cengage Learning | |
dc.relation.references | Reddy, J.N., (2006) An introduction to the finite element method, , McGrawHill | |
dc.relation.references | Bathe, K.J., (2006) Finite element procedures, , McGrawHill | |
dc.relation.references | Hetényi, Miklós, (1971) Beams on elastic foundation: theory with applications in the fields of civil and mechanical engineering, , University of Michigan | |
dc.relation.references | Eisemberger, M., Yankelevsky, D.Z., Exact stiffness matrix for beams on elastic foundation (1985) Computer & Structures, 21 (6), pp. 1355-1359 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/article |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Indexados Scopus [1893]