Mostrar el registro sencillo del ítem

dc.creatorLópez J.E.
dc.creatorGallego J.L.
dc.creatorVargas-Ruiz A.
dc.creatorPeña-Mosquera A.L.
dc.creatorZapata-Zapata A.D.
dc.creatorLópez-Sánchez I.J.
dc.creatorBotero-Botero L.R.
dc.date2020
dc.date.accessioned2021-02-05T14:57:54Z
dc.date.available2021-02-05T14:57:54Z
dc.identifier.issn7189508
dc.identifier.urihttp://hdl.handle.net/11407/5919
dc.descriptionThe purpose of this study was to evaluate the capability of Aspergillus tubingensis and Talaromyces islandicus to solubilize inorganic phosphorus sources, their activity under abiotic stress, and the enhancement of P availability in soils and plant growth. The P-solubilizing capability and acidification mechanism of the strains were assessed in vitro using tricalcium phosphate and rock phosphate. Independent assays were conducted with rock phosphate under NaCl and fungicides carbendazim, chlorothalonil, and propamocarb hydrochloride using a factorial design. Thereafter, the effects of fungal inoculations in rock phosphate–amended soil and P nutrition of Zea mays were assessed in a greenhouse experiment. Both fungi solubilized P in vitro via acidification through the exudation of acetic, citric, lactic, malic, quinic, and succinic acids. The P-solubilizing efficiency of A. tubingensis was maintained above 97.5% under 0.5 to 3.0% NaCl, up to 28.7% in the treatment with carbendazim, up to 5.3% with chlorothalonil, and above 96.5% with propamocarb hydrochloride; while T. islandicus efficiency decreased to 45.2% in a NaCl concentration-dependent trend, and maintained it above 80% in the fungicide treatments. The inoculation with A. tubingensis increased the available P in the amended soil by up to 65% after 30 days and resulted in 87% higher foliar P content, 111% greater plant height, and 25% greater dry weight of maize shoots. Similarly, T. islandicus contributed to these parameters in 55, 67, 90, and 17%, respectively. These findings suggest their potential as qualified phosphorus solubilizing microorganisms to develop novel and sustainable approaches for P fertilization in agriculture. © 2020, Sociedad Chilena de la Ciencia del Suelo.
dc.language.isoeng
dc.publisherSpringer
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85089372439&doi=10.1007%2fs42729-020-00315-w&partnerID=40&md5=084b0980065c5322586562a1353fa532
dc.sourceJournal of Soil Science and Plant Nutrition
dc.subjectAbiotic stressspa
dc.subjectBiofertilizationspa
dc.subjectLow molecular weight organic acidspa
dc.subjectPlant growthspa
dc.subjectSustainable agriculturespa
dc.subjectTricalcium phosphatespa
dc.titleAspergillus tubingensis and Talaromyces islandicus Solubilize Rock Phosphate Under Saline and Fungicide Stress and Improve Zea mays Growth and Phosphorus Nutrition
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambientalspa
dc.identifier.doi10.1007/s42729-020-00315-w
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationLópez, J.E., School of Engineering, Universidad de Medellín, Carrera 87 N° 30–65, Medellín, 050026, Colombia
dc.affiliationGallego, J.L., School of Engineering, Universidad de Medellín, Carrera 87 N° 30–65, Medellín, 050026, Colombia
dc.affiliationVargas-Ruiz, A., School of Engineering, Universidad de Medellín, Carrera 87 N° 30–65, Medellín, 050026, Colombia
dc.affiliationPeña-Mosquera, A.L., School of Engineering, Universidad de Medellín, Carrera 87 N° 30–65, Medellín, 050026, Colombia
dc.affiliationZapata-Zapata, A.D., School of Chemistry, Department of Sciences, Universidad Nacional de Colombia Sede Medellín, Calle 59 A N° 63-20, Medellín, 050034, Colombia
dc.affiliationLópez-Sánchez, I.J., School of Engineering, Universidad de Medellín, Carrera 87 N° 30–65, Medellín, 050026, Colombia
dc.affiliationBotero-Botero, L.R., School of Engineering, Universidad de Medellín, Carrera 87 N° 30–65, Medellín, 050026, Colombia
dc.relation.referencesAmann, A., Zoboli, O., Krampe, J., Rechberger, H., Zessner, M., Egle, L., Environmental impacts of phosphorus recovery from municipal wastewater (2018) Resour Conserv Recycl, 130, pp. 127-139
dc.relation.referencesBabu, A.G., Reddy, M.S., Dual inoculation of arbuscular mycorrhizal and phosphate solubilizing fungi contributes in sustainable maintenance of plant health in fly ash ponds (2011) Water Air Soil Pollut, 219, pp. 3-10. , COI: 1:CAS:528:DC%2BC3MXntVSks7s%3D
dc.relation.referencesBarra, P.J., Viscardi, S., Jorquera, M.A., Duran, P.A., Valentine, A.J., Mora, M.L., Understanding the strategies to overcome phosphorus–deficiency and aluminum–toxicity by ryegrass endophytic and rhizosphere phosphobacteria (2018) Front Microbiol, 9. , https://doi.org/10.3389/fmicb.2018.01155
dc.relation.referencesBarra, P.J., Pontigo, S., Delgado, M., Parra-Almuna, L., Duran, P., Valentine, A.J., Jorquera, M.A., Mora, M.L., Phosphobacteria inoculation enhances the benefit of P–fertilization on Lolium perenne in soils contrasting in P–availability (2019) Soil Biol Biochem, 136, p. 107516
dc.relation.referencesBashan, Y., Kamnev, A.A., De-Bashan, L.E., Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: a proposal for an alternative procedure (2013) Biol Fertil Soils, 49, pp. 465-479
dc.relation.referencesBoroumand, N., Behbahani, M., Dini, G., Combined effects of phosphate solubilizing bacteria and nanosilica on the growth of land cress plant (2020) J Soil Sci Plant Nutr, 20, pp. 232-243
dc.relation.referencesChen, Y.P., Rekha, P.D., Arun, A.B., Shen, F.T., Lai, W.A., Young, C.C., Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities (2006) Appl Soil Ecol, 34, pp. 33-41
dc.relation.referencesChuang, C.C., Kuo, Y.L., Chao, C.C., Chao, W.L., Solubilization of inorganic phosphates and plant growth promotion by Aspergillus niger (2007) Biol Fertil Soils, 43, pp. 575-584
dc.relation.referencesCollavino, M.M., Sansberro, P.A., Mroginski, L.A., Aguilar, O.M., Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth (2010) Biol Fertil Soils, 46, pp. 727-738
dc.relation.referencesCondron, L.M., Spears, B.M., Haygarth, P.M., Turner, B.L., Richardson, A.E., Role of legacy phosphorus in improving global phosphorus-use efficiency (2013) Environ Dev, 8, pp. 147-148
dc.relation.referencesde Oliveira Mendes, G., Moreira de Freitas, A.L., Liparini Pereira, O., Ribeiro da Silva, I., Bojkov Vassilev, N., Dutra Costa, M., Mechanisms of phosphate solubilization by fungal isolates when exposed to different P sources (2014) Ann Microbiol, 64, pp. 239-249
dc.relation.referencesGaind, S., Phosphate dissolving fungi: mechanism and application in alleviation of salt stress in wheat (2016) Microbiol Res, 193, pp. 94-102. , COI: 1:CAS:528:DC%2BC28Xhs1Siu73P
dc.relation.referencesGunde-Cimerman, N., Ramos, J., Plemenitaš, A., Halotolerant and halophilic fungi (2009) Mycol Res, 113, pp. 1231-1241
dc.relation.referencesHawkins, A.R., Lamb, H.K., Moore, J.D., Charles, I.G., Roberts, C.F., The pre-chorismate (shikimate) and quinate pathways in filamentous fungi: theoretical and practical aspects (1993) Microbiology, 139 (12), pp. 2891-2899. , COI: 1:CAS:528:DyaK2cXht12is74%3D
dc.relation.referencesHayes, B.M.E., Anderson, M.A., Traven, A., van der Weerden, N.L., Bleackley, M.R., Activation of stress signalling pathways enhances tolerance of fungi to chemical fungicides and antifungal proteins (2014) Cell Mol Life Sci, 71, pp. 2651-2666
dc.relation.referencesHerrera, H., Palma, G., Almonacid, L., Campos, R., Fuentes, A., Garcia-Romera, I., Arriagada, C., Improving soil simazine dissipation through an organic amendment inoculated with Trametes versicolor (2019) J Soil Sci Plant Nutr, 19, pp. 262-269
dc.relation.referencesJain, R., Saxena, J., Sharma, V., The ability of two fungi to dissolve hardly soluble phosphates in solution (2017) Mycology, 8, pp. 104-110
dc.relation.referencesJiang, H., Qi, P., Wang, T., Wang, M., Chen, M., Chen, N., Pan, L., Chi, X., Isolation and characterization of halotolerant phosphate-solubilizing microorganisms from saline soils (2018) 3 Biotech, 8, p. 461
dc.relation.referencesKang, S.M., Radhakrishnan, R., You, Y.H., Joo, G.J., Lee, I.J., Lee, K.E., Kim, J.H., Phosphate solubilizing Bacillus megaterium MJ1212 regulates endogenous plant carbohydrates and amino acids contents to promote mustard plant growth (2014) Indian J Microbiol, 54, pp. 427-433. , COI: 1:CAS:528:DC%2BC2cXpsVantLs%3D
dc.relation.referencesKanse, O.S., Whitelaw-Weckert, M., Kadam, T.A., Bhosale, H.J., Phosphate solubilization by stress-tolerant soil fungus Talaromyces funiculosus SLS8 isolated from the Neem rhizosphere (2015) Ann Microbiol, 65, pp. 85-93. , COI: 1:CAS:528:DC%2BC2MXjsVajsLY%3D
dc.relation.referencesKhan, A., Jilani, G., Zhang, D., Akbar, S., Malik, K.M., Rukh, S., Mujtaba, G., Acidithiobacillus thiooxidans IW16 and sulfur synergistically with struvite aggrandize the phosphorus bioavailability to wheat in alkaline soil (2020) J Soil Sci Plant Nutr, 20, pp. 95-104
dc.relation.referencesLewis, K.A., Tzilivakis, J., Warner, D.J., Green, A., An international database for pesticide risk assessments and management (2016) Https://Sitem.Herts.Ac.Uk/Aeru/Ppdb/En/Index.Htm. Hum Ecol Risk Assess, 22, pp. 1050-1064. , https://doi.org/10.1080/10807039.2015.1133242
dc.relation.referencesLi, Z., Bai, T., Dai, L., Wang, F., Tao, J., Meng, S., Hu, S., A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger (2016) Sci Rep, 6, p. 25313. , COI: 1:CAS:528:DC%2BC28XmvFegsL4%3D
dc.relation.referencesLiu, F.P., Liu, H.Q., Zhou, H.L., Dong, Z.G., Bai, X.H., Bai, P., Qiao, J.J., Isolation and characterization of phosphate-solubilizing bacteria from betel nut (Areca catechu) and their effects on plant growth and phosphorus mobilization in tropical soils (2014) Biol Fertil Soils, 50, pp. 927-937. , COI: 1:CAS:528:DC%2BC2cXht1CltLjN
dc.relation.referencesLobo, C.B., Juárez Tomás, M.S., Viruel, E., Ferrero, M.A., Lucca, M.E., Development of low-cost formulations of plant growth-promoting bacteria to be used as inoculants in beneficial agricultural technologies (2019) Microbiol Res, 219, pp. 12-25. , COI: 1:CAS:528:DC%2BC1cXitFOisL7P
dc.relation.referencesMendes, G.O., Dias, C.S., Silva, I.R., Júnior, J.I.R., Pereira, O.L., Costa, M.D., Fungal rock phosphate solubilization using sugarcane bagasse (2013) World J Microbiol Biotechnol, 29, pp. 43-50
dc.relation.referencesMora, M.L., Demanet, R., Acuña, J.J., Viscardi, S., Jorquera, M., Rengel, Z., Durán, P., Aluminum-tolerant bacteria improve the plant growth and phosphorus content in ryegrass grown in a volcanic soil amended with cattle dung manure (2017) Appl Soil Ecol, 115, pp. 19-26
dc.relation.referencesMurphy, J., Riley, J., A modified single solution method for the determination of phosphate in natural waters (1962) Anal Chim Acta, 27, pp. 31-36. , COI: 1:CAS:528:DyaF38XksVyntr8%3D
dc.relation.referencesMusarrat, J., Khan, M.S., Factors affecting phosphate-solubilizing activity of microbes: current status (2014) Phosphate solubilizing microorganisms, pp. 63-85. , Khan MS, Zaidi A, Musarrat J, (eds), Cham Springer International Publishing, New York
dc.relation.referencesOsorio, N.W., Habte, M., Phosphate desorption from the surface of soil mineral particles by a phosphate-solubilizing fungus (2013) Biol Fertil Soils, 49, pp. 481-486. , COI: 1:CAS:528:DC%2BC3sXmvFSqtr8%3D
dc.relation.referencesPansu, M., Gautheyrou, J., (2006) Handbook of soil analysis, , Springer Berlin Heidelberg, Berlin, Heidelberg
dc.relation.referencesPlassard, C., Fransson, P., Regulation of low-molecular weight organic acid production in fungi (2009) Fungal Biol Rev, 23, pp. 30-39
dc.relation.referencesPrabhu, N., Borkar, S., Garg, S., Phosphate solubilization by microorganisms (2019) Advances in Biological Science Research, pp. 161-176. , https://doi.org/10.1016/B978-0-12-817497-5.00011-2, Elsevier
dc.relation.referencesSamaddar, S., Chatterjee, P., Truu, J., Anandham, R., Kim, S., Sa, T., Long-term phosphorus limitation changes the bacterial community structure and functioning in paddy soils (2019) Appl Soil Ecol, 134, pp. 111-115
dc.relation.referencesSantander, C., Sanhueza, M., Olave, J., Borie, F., Valentine, A., Cornejo, P., Arbuscular mycorrhizal colonization promotes the tolerance to salt stress in lettuce plants through an efficient modification of ionic balance (2019) J Soil Sci Plant Nutr, 19, pp. 321-331
dc.relation.referencesShekhar Nautiyal, C., An efficient microbiological growth medium for screening phosphate solubilizing microorganisms (1999) FEMS Microbiol Lett, 170, pp. 265-270
dc.relation.referencesSingh, H., Reddy, M.S., Effect of inoculation with phosphate solubilizing fungus on growth and nutrient uptake of wheat and maize plants fertilized with rock phosphate in alkaline soils (2011) Eur J Soil Biol, 47, pp. 30-34. , COI: 1:CAS:528:DC%2BC3MXms1Cj
dc.relation.referencesSrinivasan, R., Yandigeri, M.S., Kashyap, S., Alagawadi, A.R., Effect of salt on survival and P-solubilization potential of phosphate solubilizing microorganisms from salt affected soils (2012) Saudi J Biol Sci, 19, pp. 427-434
dc.relation.referencesSudhakara Reddy, S., Kumar, S., Babita, K., Reddy, M.S., Biosolubilization of poorly soluble rock phosphates by Aspergillus tubingensis and Aspergillus niger (2002) Bioresour Technol, 84 (2), pp. 187-189
dc.relation.referencesTandon, A., Fatima, T., Shukla, D., Tripathi, P., Srivastava, S., Singh, P.C., Phosphate solubilization by Trichoderma koningiopsis (NBRI-PR5) under abiotic stress conditions (2019) J King Saud Univ Sci, , https://doi.org/10.1016//j.jksus.2019.02.001
dc.relation.referencesTortella, G.R., Rubilar, O., Cea, M., Rodríguez-Rodríguez, C., Seguel, A., Parada, J., Sorption parameters of carbendazim and iprodione in the presence of copper nanoparticles in two different soils (2019) J Soil Sci Plant Nutr, 19, pp. 469-476
dc.relation.referencesVassilev, N., Vassileva, M., Biotechnological solubilization of rock phosphate on media containing agro-industrial wastes (2003) Appl Biochem Biotechnol, 61, pp. 435-440. , COI: 1:CAS:528:DC%2BD3sXjvFCltrY%3D
dc.relation.referencesVazquez, P., Holguin, G., Puente, M.E., Lopez-Cortes, A., Bashan, Y., Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon (2000) Biol Fertil Soils, 30, pp. 460-468
dc.relation.referencesVyas, P., Rahi, P., Chauhan, A., Gulati, A., Phosphate solubilization potential and stress tolerance of Eupenicillium parvum from tea soil (2007) Mycol Res, 111, pp. 931-938
dc.relation.referencesWahid, O.A.A., Mehana, T.A., Impact of phosphate-solubilizing fungi on the yield and phosphorus-uptake by wheat and faba bean plants (2000) Microbiol Res, 155, pp. 221-227. , COI: 1:CAS:528:DC%2BD3cXot1ansbY%3D
dc.relation.referencesWakelin, S.A., Warren, R.A., Harvey, P.R., Ryder, M.H., Osmond, G., Phosphate solubilization by Penicillium spp. closely associated with wheat roots (2004) Biol Fertil Soils, 40, pp. 36-43. , COI: 1:CAS:528:DC%2BD2cXksFGhsr4%3D
dc.relation.referencesWang, H.Y., Liu, S., Zhai, L.M., Zhang, J.Z., Ren, T.Z., Fan, B.Q., Liu, H.B., Preparation and utilization of phosphate biofertilizers using agricultural waste (2015) J Integr Agric, 14, pp. 158-167. , COI: 1:CAS:528:DC%2BC2MXksF2gsLk%3D
dc.relation.referencesWu, J., Zhang, A., Li, G., Wei, Y., He, S., Lin, Z., Wang, Q., Effect of different components of single superphosphate on organic matter degradation and maturity during pig manure composting (2019) Sci Total Environ, 646, pp. 587-594. , COI: 1:CAS:528:DC%2BC1cXhsVWhsL3O
dc.relation.referencesXiao, C.-Q., Chi, R.-A., Huang, X.-H., Zhang, W.-X., Qiu, G.-Z., Wang, D.-Z., Optimization for rock phosphate solubilization by phosphate-solubilizing fungi isolated from phosphate mines (2008) Ecol Eng, 33 (2), pp. 187-193
dc.relation.referencesXiao, C., Zhang, H., Fang, Y., Chi, R., Evaluation for rock phosphate solubilization in fermentation and soil–plant system using a stress-tolerant phosphate-solubilizing Aspergillus niger WHAK1 (2013) Appl Biochem Biotechnol, 169, pp. 123-133. , COI: 1:CAS:528:DC%2BC3sXhsVKlur4%3D
dc.relation.referencesZhu, J., Li, M., Whelan, M., Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: a review (2018) Sci Total Environ, 612, pp. 522-537. , COI: 1:CAS:528:DC%2BC2sXhsVansb7I
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem