Mostrar el registro sencillo del ítem

dc.creatorVargas A.C.
dc.creatorGarciá A.M.
dc.creatorArrieta C.E.
dc.creatorSierra Del Rio J.
dc.creatorAmell A.
dc.date2020
dc.date.accessioned2021-02-05T14:57:57Z
dc.date.available2021-02-05T14:57:57Z
dc.identifier.issn24701343
dc.identifier.urihttp://hdl.handle.net/11407/5925
dc.descriptionThe aim of our work was to study turbulent premixed flames in subatmospheric conditions. For this purpose, turbulent premixed flames of lean methane/air mixtures were stabilized in a nozzle-type Bunsen burner and analyzed using Schlieren visualization and image processing to calculate turbulent burning velocities by the mean-angle method. Moreover, hot-wire anemometer measurements were performed to characterize the turbulent aspects of the flow. The environmental conditions were 0.85 atm, 0.98 atm, and 295 ± 2 K. The turbulence-flame interaction was analyzed based on the geometric parameters combined with laminar flame properties (which were experimentally and numerically determined), integral length scale, and Kolmogorov length scale. Our results show that the effects of subatmospheric pressure on turbulent burning velocity are significant. The ratio between turbulent and laminar burning velocities increases with turbulence intensity, but this effect tends to decrease as the atmospheric pressure is reduced. We propose a general empirical correlation as a function between ST/SL and u′/SL based on the experimental results obtained in this study and the equivalence ratio and pressure we established. Copyright © 2020 American Chemical Society.
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85092336675&doi=10.1021%2facsomega.0c02670&partnerID=40&md5=f23024f2866ac6a881883c9c35852b09
dc.sourceACS Omega
dc.titleBurning Velocity of Turbulent Methane/Air Premixed Flames in Subatmospheric Environments
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería en Energíaspa
dc.identifier.doi10.1021/acsomega.0c02670
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationVargas, A.C., Grupo de Investigación de Materiales Avanzados y Energlá, Instituto Tecnológico Metropolitano, Medellín, 050034, Colombia
dc.affiliationGarciá, A.M., Grupo de Ciencia y Tecnologlá del Gas y Uso Racional de la Energlá, Facultad de Ingenierlá, Universidad de Antioquia, Medellín, 050010, Colombia
dc.affiliationArrieta, C.E., Grupo de Ingenierlá en Energlá, Facultad de Ingenierlá, Universidad de Medellĺn, Medellín, 050026, Colombia
dc.affiliationSierra Del Rio, J., Grupo de Investigación de Materiales Avanzados y Energlá, Instituto Tecnológico Metropolitano, Medellín, 050034, Colombia
dc.affiliationAmell, A., Grupo de Ciencia y Tecnologlá del Gas y Uso Racional de la Energlá, Facultad de Ingenierlá, Universidad de Antioquia, Medellín, 050010, Colombia
dc.relation.referencesKobayashi, H., Kawazoe, H., Flame instability effects on the smallest wrinkling scale and burning velocity of high-pressure turbulent premixed flames (2000) Proc. Combust. Inst., 28, pp. 375-382
dc.relation.referencesKobayashi, H., Kawabata, Y., Maruta, K., Experimental study on general correlation of turbulent burning velocity at high pressure (1998) Symp. Combust., 27, pp. 941-948
dc.relation.referencesKobayashi, H., Kawahata, T., Seyama, K., Fujimari, T., Kim, J.-S., Relationship between the smallest scale of flame wrinkles and turbulence characteristics of high-pressure, high-temperature turbulent premixed flames (2002) Proc. Combust. Inst., 29, pp. 1793-1800
dc.relation.referencesKobayashi, H., Nakashima, T., Tamura, T., Maruta, K., Niioka, T., Turbulence measurements and observations of turbulent premixed flames at elevated pressures up to 3.0 MPa (1997) Combust. Flame, 108, pp. 104-117
dc.relation.referencesKobayashi, H., Experimental study of high-pressure turbulent premixed flames (2002) Exp. Therm. Fluid Sci., 26, pp. 375-387
dc.relation.referencesKobayashi, H., Seyama, K., Hagiwara, H., Ogami, Y., Aldredge, R., Burning velocity correlation of methane/air turbulent premixed flames at high pressure and high temperature (2005) Proc. Combust. Inst., 30, pp. 827-834
dc.relation.referencesKobayashi, H., Tamura, T., Maruta, K., Niioka, T., Williams, F.A., Burning velocity of turbulent premixed flames in a high-pressure environment (1996) Symp. Combust., 26, pp. 389-396
dc.relation.referencesShy, S.S., Lin, W., Wei, J., An experimental correlation of turbulent burning velocities for premixed turbulent methane-air combustion (2000) Proc. R. Soc. London, Ser. A, 456, pp. 1997-2019
dc.relation.referencesSmallwood, G., Characterization of flame front surfaces in turbulent premixed methane/Air combustion (1995) Combust. Flame, 101, pp. 461-470
dc.relation.referencesJiang, Y.-h., Li, G.-x., Li, H.-m., Zhang, G.-p., Lv, J.-c., Experimental Study on the Self-Similar Propagation of H2/CO/Air Turbulent Premixed Flame (2019) Energy Fuels, 33, pp. 12736-12741
dc.relation.referencesJiang, Y.-h., Li, G.-x., Li, H.-m., Li, L., Zhang, G.-p., Experimental study on the turbulent premixed combustion characteristics of 70%H2/30%CO/air mixtures (2019) Int. J. Hydrogen Energy, 44, pp. 14012-14022
dc.relation.referencesLi, H.-M., Li, G.-X., Jiang, Y.-H., Li, L., Li, F.-S., Flame stability and propagation characteristics for combustion in air for an equimolar mixture of hydrogen and carbon monoxide in turbulent conditions (2018) Energy, 157, pp. 76-86
dc.relation.referencesGoldenberg, S.A., Pelevin, V.S., Influence of pressure on rate of flame propagation in turbulent flow (1958) Symp. Combust., 7, pp. 590-594
dc.relation.referencesKhramtsov, V.A., Investigation of pressure effect on the parameters of turbulence and on turbulent burning (1958) Symp. Combust., 7, pp. 609-614
dc.relation.referencesSchorn, N., Bonebrake, J.M., Pendergrass, B., Fillo, A.J., Blunck, D.L., Turbulent consumption speed of large hydrocarbon fuels at sub-atmospheric conditions (2019) AIAA Scitech 2019 Forum, pp. 1-8
dc.relation.referencesCardona, A., Garciá, A., Cano, F., Arrieta, C.E., Yepes, H.A., Amell, A., Experimental study of turbulent syngas/methane/air flames at a sub-atmospheric condition (2019) J. Phys.: Conf. Ser., 1409, p. 012012
dc.relation.referencesYu, G., Law, C.K., Wu, C.K., Laminar flame speeds of hydrocarbon+ air mixtures with hydrogen addition (1986) Combust. Flame, 63, pp. 339-347
dc.relation.referencesEgolfopoulos, F.N., Law, C.K., Chain mechanims in the overall reaction orders in laminar flame propagation (1990) Combust. Flame, 80, pp. 7-16
dc.relation.referencesEgolfopoulos, F.N., Law, C.K., An experimental and computational study of the burning rates of ultra-lean to moderately-rich H2/O2/N2 laminar flames with pressure variations (1991) Symp. Combust., 23, pp. 333-340
dc.relation.referencesKonnov, A.A., Riemeijer, R., de Goey, L.P.H., Adiabatic laminar burning velocities of CH4+H2+air flames at low pressures (2010) Fuel, 89, pp. 1392-1396
dc.relation.referencesKuznetsov, M., Kobelt, S., Grune, J., Jordan, T., Flammability limits and laminar flame speed of hydrogen-air mixtures at sub-atmospheric pressures (2012) Int. J. Hydrogen Energy, 37, pp. 17580-17588
dc.relation.referencesBurbano, H.J., Pareja, J., Amell, A.A., Laminar burning velocities and flame stability analysis of syngas mixtures at sub-atmospheric pressures (2011) Int. J. Hydrogen Energy, 36, pp. 3243-3252
dc.relation.referencesTurns, S.R., (2000) An Introduction to Combustion Concepts and Applications, , Mc graw Hill Higher Education: Singapore
dc.relation.referencesAndrews, G.E., Bradley, D., The burning velocity of methane-air mixtures (1972) Combust. Flame, 19, pp. 275-288
dc.relation.referencesMauss, F., Peters, N., Peters, N., Rogg, B., (1993) Reduced Kinetic Mechanisms for Applications in Combustion Systems, p. 72. , Eds. Springer-Verlag: New York, n.d
dc.relation.referencesRockwell, S.R., Rangwala, A.S., Influence of coal dust on premixed turbulent methane-air flames (2013) Combust. Flame, 160, pp. 635-640
dc.relation.referencesRanganathan, S., Petrow, D., Rockwell, S.R., Rangwala, A.S., Turbulent burning velocity of methane-air-dust premixed flames (2018) Combust. Flame, 188, pp. 367-375
dc.relation.referencesWang, J., Zhang, M., Xie, Y., Huang, Z., Kudo, T., Kobayashi, H., Correlation of turbulent burning velocity for syngas / air mixtures at high pressure up to 1. 0 MPa (2013) Exp. Therm. Fluid Sci., 50, pp. 90-96
dc.relation.referencesWang, J., Yu, S., Zhang, M., Jin, W., Huang, Z., Chen, S., Burning velocity and statistical flame front structure of turbulent premixed flames at high pressure up to 1.0 MPa (2015) Exp. Therm. Fluid Sci., 68, pp. 196-204
dc.relation.referencesGrover, J.I., Fales, E.N., Scurlock, A.C., Turbulent flame studies in two-dimensional open Burners (1963) Symp. Combust., 9, p. 15
dc.relation.referencesZhang, M., Wang, J., Xie, Y., Jin, W., Wei, Z., Huang, Z., Flame front structure and burning velocity of turbulent premixed CH4/H2/air flames (2013) Int. J. Hydrogen Energy, 38, pp. 11421-11428
dc.relation.referencesObando, J., Lezcano, C., Amell, A., Experimental analysis of the addition and substitution of sub-bituminous pulverized coal in a natural gas premixed flame (2017) Appl. Therm. Eng., 125, pp. 232-239
dc.relation.referencesRockwell, S., (2012) Influence of Coal Dust on Premixed Turbulent Methane-Air Flames, , Worcester Polytechnic Institute
dc.relation.referencesCardona Vargas, A., Amell Arrieta, A., Arrieta, C.E., Combustion characteristics of several typical shale gas mixtures (2016) J. Nat. Gas Sci. Eng., 33, pp. 296-304
dc.relation.referencesTyagi, H., Liu, R., Ting, D.S.-K., Johnston, C.R., Measurement of wake properties of a sphere in freestream turbulence (2006) Exp. Therm. Fluid Sci., 30, pp. 587-604
dc.relation.referencesGülder, Ö.L., Turbulent premixed flame propagation models for different combustion regimes (1991) Symp. Combust., 23, pp. 743-750
dc.relation.referencesCardona, C.A., Amell, A.A., Laminar burning velocity and interchangeability analysis of biogas/C3H8/H2 with normal and oxygen-enriched air (2013) Int. J. Hydrogen Energy, 38, pp. 7994-8001
dc.relation.referencesKee, R.J., Rupley, F.M., Miller, J.A., Coltrin, M.E., Grcar, J.F., Meeks, E., (2000) CHEMKIN Collection, , et al. Release 3.6
dc.relation.referencesKee, R., Grcar, J., Smooke, M., Miller, J., Meeks, E., (1985) PREMIX: A FORTRAN Program for Modeling Steady Laminar One-Dimensional, pp. 1-87. , SANDIA Natl Lab
dc.relation.referencesSmith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., (2000) GRI-Mech 3.0, , et al
dc.relation.referencesVagelopoulos, C.M., Egolfopoulos, F.N., Direct experimental determination of laminar flame speeds (1998) Symp. Combust., 27, pp. 513-519
dc.relation.referencesPeters, N., Laminar flamelet concepts in turbulent combustion (1988) Symp. Combust., 21, pp. 1231-1250
dc.relation.referencesLasdon, L.S., Waren, A.D., Jain, A., Ratner, M., Design and Testing of a Generalized Reduced Gradient Code for Nonlinear Programming (1978) ACM Trans. Math Software, 4, pp. 34-50
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem