Mostrar el registro sencillo del ítem

dc.creatorCardona-Vargas A.
dc.creatorValencia D.
dc.creatorArrieta C.E.
dc.creatorAmell A.
dc.date2020
dc.date.accessioned2021-02-05T14:57:58Z
dc.date.available2021-02-05T14:57:58Z
dc.identifier.issn17426588
dc.identifier.urihttp://hdl.handle.net/11407/5929
dc.descriptionThis work presents an experimental investigation on the combustion behavior of a mixture of hydrogen, carbon monoxide and carbon dioxide in hot and diluted streams, like those obtain under flameless combustion regimes. A jet in a hot coflow burner was used to carry out the experiments. This burner consists of a central fuel jet surrounded by a combustion products stream, which comes from a premixed flame under lean conditions. In this way, it is possible to obtain high temperature and low oxygen concentration in the jet flame. Here, a mixture of 40% H2, 40% CO and 20% CO was issued through the jet nozzle. This composition corresponds to a renewable fuel known as syngas. Three oxygen composition in the oxidant stream were evaluated: 2.0%, 4.7% and 6.9%. Temperature and species concentration values were measured along axial and radial lines under a fix Reynolds's number. The results suggest that when oxygen concentration increases, CO and NO emissions of the total process decreases. © 2020 Published under licence by IOP Publishing Ltd.
dc.language.isoeng
dc.publisherIOP Publishing Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85097873112&doi=10.1088%2f1742-6596%2f1708%2f1%2f012013&partnerID=40&md5=902bc45f6add5aaf06d3a38589a8d9ff
dc.sourceJournal of Physics: Conference Series
dc.titleCombustion of a hydrogen/carbon monoxide/carbon dioxide mixture in hot and diluted streams
dc.typeConference Papereng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería en Energíaspa
dc.identifier.doi10.1088/1742-6596/1708/1/012013
dc.subject.keywordCarbon dioxideeng
dc.subject.keywordCarbon dioxide processeng
dc.subject.keywordCarbon monoxideeng
dc.subject.keywordFuel burnerseng
dc.subject.keywordMixtureseng
dc.subject.keywordOxygeneng
dc.subject.keywordCombustion behavioreng
dc.subject.keywordCombustion productseng
dc.subject.keywordExperimental investigationseng
dc.subject.keywordFlameless combustioneng
dc.subject.keywordHigh temperatureeng
dc.subject.keywordOxygen concentrationseng
dc.subject.keywordRenewable fuelseng
dc.subject.keywordSpecies concentrationeng
dc.subject.keywordCombustioneng
dc.relation.citationvolume1708
dc.relation.citationissue1
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationCardona-Vargas, A., Grupo de Investigación de Materiales Avanzados y Energiá, Instituto Tecnoólgico Metropolitano, Medellín, Colombia
dc.affiliationValencia, D., Facultad de Ingenieriá, Universidad de Antioquia, Medellín, Colombia
dc.affiliationArrieta, C.E., Grupo de Investigación en Energiá, Universidad de Medellín, Medellín, Colombia
dc.affiliationAmell, A., Grupo de Ciencia y Tecnologiá Del Gas y Uso Racional de la Energiá, Universidad de Antioquia, Medellín, Colombia
dc.relation.referencesKhoukit, T, Tangthieng, C, A numerical investigation of the temperature uniformity of a billet due to thermal radiation in a reheating furnace (2016) Eng. J, 20, p. 35
dc.relation.referencesCala, O M, Merino, L, Kafarov, V, Saavedra, J, Evaluation of combustion models for determination of refinery furnaces efficiency Ingeniare (2015) Revista Chilena de Ingenieriá, 23, p. 429
dc.relation.referencesCavaliere, A, De Joannon, M, Mild combustion (2004) Progress in Energy and Combustion Science, 30, p. 329
dc.relation.referencesRukthong, W, Thanatawee, P, Sunphorka, S, Computation of biomass combustion characteristic and kinetic parameters by using thermogravimetric analysis (2015) Eng. J, 19, pp. 41-58
dc.relation.referencesKaewpradap, A, Noppharatana, A, Jugjai, S, Cellular premixed flames of synthetic biogas composition effects on flat burner (2017) Eng. J, 21, p. 415
dc.relation.referencesAnetor, L, Osakue, E, Odetunde, C, Reduced mechanism approach of modeling premixed propane-air mixture using ANSYS fluent (2012) Eng. J, 16, p. 67
dc.relation.referencesArrieta, C E, Gartiá, A, Cardona, A, Bedoya, I, Amell, A, Numerical simulation of the combustion stability of natural gas and syngas in a surface-stabilized combustion burner (2019) Journal of Physics Conference: Series, 1409, p. 1. , 012017
dc.relation.referencesCardona, A, Gartiá, A, Cano, F, Arrieta, C E, Yepes, H A, Amell, A, Experimental study of turbulent syngas/methane/air flames at a sub-atmospheric condition (2019) Journal of Physics: Conference Series, 1409 12012, p. 1
dc.relation.referencesConcha, A A, Andalaft Ch, A, Fariás, F O, Coal gasification for power generation: Analysis with real options valuation Ingeniare (2009) Revista Chilena de Ingenieriá, 17, p. 347
dc.relation.referencesWang, J, Zhang, M, Xie, Y, Huang, Z, Kudo, T, Kobayashi, H, Correlation of turbulent burning velocity for syngas/air mixtures at high pressure up to 1.0 MPa (2013) Exp. Therm. Fluid Sci, 50, p. 90
dc.relation.referencesArrieta, C E, Amell, A A, Combustion analysis of an equimolar mixture of methane and syngas in a surface-stabilized combustion burner for household appliances (2014) Fuel, 137, p. 11
dc.relation.referencesAmell, A A, Yepes, H A, Cadavid, F J, Numerical and experimental study on laminar burning velocity of syngas produced from biomass gasification in sub-atmospheric pressures (2014) Int. J. Hydrogen Energy, 39, p. 8797
dc.relation.referencesBurbano, H J, Pareja, J, Amell, A A, Laminar burning velocities and flame stability analysis of syngas mixtures at sub-atmospheric pressures (2011) Int. J. Hydrogen Energy, 36, p. 3243
dc.relation.referencesCabra, R, Hamano, Y, Chen, J Y, Dibble, R W, Acosta, F, Holve, D, (2000) Ensemble diffraction measurements of spray combustion in a novel vitiated coflow turbulent jet flame burner NASA 210466 1
dc.relation.referencesAnon Medwell, P R, (2007) Laser Diagnostics in MILD Combustion, , (Adelaide: The University of Adelaide)
dc.relation.referencesMedwell, P R, Kalt, P A M, Dally, B B, Simultaneous imaging of OH, formaldehyde, and temperature of turbulent nonpremixed jet flames in a heated and diluted coflow (2007) Combust. Flame, 148, p. 48
dc.relation.referencesChristo, F C, Dally, B B, Modeling turbulent reacting jets issuing into a hot and diluted coflow (2005) Combust. Flame, 142, p. 117
dc.relation.referencesDally, B B, Karpetis, A N, Barlow, R S, Structure of turbulent non-premixed jet flames in a diluted hot coflow (2002) Proc. Combust. Inst, 29, p. 1147
dc.relation.referencesSepman, A, Abtahizadeh, E, Mokhov, A, Van Oijen, J, Levinsky, H, De Goey, P, Experimental and numerical studies of the effects of hydrogen addition on the structure of a laminar methane-nitrogen jet in hot coflow under MILD conditions (2013) Int. J. Hydrogen Energy, 38, p. 13802
dc.relation.referencesFrassoldati, A, Sharma, P, Cuoci, A, Faravelli, T, Ranzi, E, Kinetic and fluid dynamics modeling of methane/hydrogen jet flames in diluted coflow (2010) Appl. Therm. Eng, 30, p. 376
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/other


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem