Mostrar el registro sencillo del ítem

dc.creatorGómez-Pérez J.F.
dc.creatorCorrea J.D.
dc.creatorPravda C.B.
dc.creatorKónya Z.
dc.creatorKukovecz Á.
dc.date2020
dc.date.accessioned2021-02-05T14:58:04Z
dc.date.available2021-02-05T14:58:04Z
dc.identifier.issn19327447
dc.identifier.urihttp://hdl.handle.net/11407/5934
dc.descriptionIn this work, oxidation processes are correlated with the current-voltage characteristics of few-layer black phosphorus obtained by liquid-phase exfoliation. Black phosphorous (BP), a room-temperature p-type semiconductor, exhibits an anomalous switching behavior between 373 and 448 K. The anomalous increase in electrical resistance is explained using a combined spectroscopic and DFT approach. The activation energy for thermally activated electrical conductance was calculated from the current-voltage characteristics and correlated with the oxidation processes. The activation energy for thermally activated electrical conductance in the dangling oxide BP phase was found to be 79.7 meV, ∼40 times lower than that in the interstitial counterpart. First-principles calculations reveal electronic differences between dangling and interstitial oxides, and electrical resistance measurements reveal a Schottky-to-ohmic contact formation related to the differences in the calculated work function of dangling and interstitial oxides. We propose that this phenomenon can be exploited as a fast, economical method for the evaluation of the oxidation processes in few-layer BP. ©
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85096065530&doi=10.1021%2facs.jpcc.0c06542&partnerID=40&md5=f3c9c3e9720f1dcbe38f9ea2e742279a
dc.sourceJournal of Physical Chemistry C
dc.titleDangling-to-Interstitial Oxygen Transition and Its Modifications of the Electronic Structure in Few-Layer Phosphorene
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.identifier.doi10.1021/acs.jpcc.0c06542
dc.subject.keywordBlack Phosphoruseng
dc.subject.keywordCalculationseng
dc.subject.keywordCurrent voltage characteristicseng
dc.subject.keywordElectric conductanceeng
dc.subject.keywordElectric resistanceeng
dc.subject.keywordElectronic structureeng
dc.subject.keywordOhmic contactseng
dc.subject.keywordOxidationeng
dc.subject.keywordOxygeneng
dc.subject.keywordPhosphoruseng
dc.subject.keywordElectrical conductanceeng
dc.subject.keywordElectrical resistance measurementeng
dc.subject.keywordElectrical resistanceseng
dc.subject.keywordElectronic differenceseng
dc.subject.keywordFirst-principles calculationeng
dc.subject.keywordInterstitial oxygeneng
dc.subject.keywordOhmic contact formationeng
dc.subject.keywordP type semiconductoreng
dc.subject.keywordActivation energyeng
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationGómez-Pérez, J.F., Interdisciplinary Excellence Centre, Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720, Hungary
dc.affiliationCorrea, J.D., Universidad de Medellín, Facultad de Ciencias Básicas, Medellín, 050026, Colombia
dc.affiliationPravda, C.B., Interdisciplinary Excellence Centre, Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720, Hungary
dc.affiliationKónya, Z., Interdisciplinary Excellence Centre, Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720, Hungary, MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720, Hungary
dc.affiliationKukovecz, Á., Interdisciplinary Excellence Centre, Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720, Hungary
dc.relation.referencesBuscema, M., Groenendijk, D.J., Blanter, S.I., Steele, G.A., Van Der Zant, H.S.J., Castellanos-Gomez, A., Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors (2014) Nano Lett., 14, pp. 3347-3352
dc.relation.referencesAbbas, A.N., Liu, B., Chen, L., Ma, Y., Cong, S., Aroonyadet, N., Köpf, M., Zhou, C., Black phosphorus gas sensors (2015) ACS Nano, 9, pp. 5618-5624
dc.relation.referencesCui, S., Pu, H., Wells, S.A., Wen, Z., Mao, S., Chang, J., Hersam, M.C., Chen, J., Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors (2015) Nat. Commun., 6, p. 8632
dc.relation.referencesHanlon, D., Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics (2015) Nat. Commun., 6, p. 8563
dc.relation.referencesYasaei, P., Kumar, B., Foroozan, T., Wang, C., Asadi, M., Tuschel, D., Indacochea, J.E., Salehi-Khojin, A., High-Quality Black Phosphorus Atomic Layers by Liquid-Phase Exfoliation (2015) Adv. Mater., 27, pp. 1887-1892
dc.relation.referencesChen, Y., Ren, R., Pu, H., Chang, J., Mao, S., Chen, J., Field-effect transistor biosensors with two-dimensional black phosphorus nanosheets (2017) Biosens. Bioelectron., 89, pp. 505-510
dc.relation.referencesLv, Y., Qin, W., Wang, C., Liao, L., Liu, X., Recent Advances in Low-Dimensional Heterojunction-Based Tunnel Field Effect Transistors (2018) Adv. Electron. Mater., 5, p. 1800569
dc.relation.referencesBai, L., Black Phosphorus/Platinum Heterostructure: A Highly Efficient Photocatalyst for Solar-Driven Chemical Reactions (2018) Adv. Mater., 30, p. 1803641
dc.relation.referencesZhang, G., Huang, S., Chaves, A., Song, C., Özçelik, V.O., Low, T., Yan, H., Infrared fingerprints of few-layer black phosphorus (2017) Nat. Commun., 8, p. 14071
dc.relation.referencesLi, L., Yu, Y., Ye, G.J., Ge, Q., Ou, X., Wu, H., Feng, D., Zhang, Y., Black phosphorus field-effect transistors (2014) Nat. Nanotechnol., 9, pp. 372-377
dc.relation.referencesNovoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A., Two-dimensional gas of massless Dirac fermions in graphene (2005) Nature, 438, pp. 197-200
dc.relation.referencesBolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., Stormer, H.L., Ultrahigh electron mobility in suspended graphene (2008) Solid State Commun., 146, pp. 351-355
dc.relation.referencesYu, Z., Ong, Z.Y., Li, S., Xu, J., Bin, Z.G., Zhang, Y.W., Shi, Y., Wang, X., Analyzing the Carrier Mobility in Transition-Metal Dichalcogenide MoS2 Field-Effect Transistors (2017) Adv. Funct. Mater., 27, p. 1604093
dc.relation.referencesZiletti, A., Carvalho, A., Campbell, D.K., Coker, D.F., Castro Neto, A.H., Oxygen defects in phosphorene (2015) Phys. Rev. Lett., 114, pp. 26-29
dc.relation.referencesWang, G., Pandey, R., Karna, S.P., Phosphorene Oxide: Stability and Electronic Properties of a Novel Two-Dimensional Material (2015) Nanoscale, 7, pp. 524-531
dc.relation.referencesWang, J., Wei, L., Zhang, L., Jiang, C., Siu-Wai Kong, E., Zhang, Y., Preparation of high aspect ratio nickel oxide nanowires and their gas sensing devices with fast response and high sensitivity (2012) J. Mater. Chem., 22, p. 8327
dc.relation.referencesKc, S., Longo, R.C., Wallace, R.M., Cho, K., Surface oxidation energetics and kinetics on MoS2 monolayer (2015) J. Appl. Phys., 117, p. 135301
dc.relation.referencesZhao, Y., Wu, X., Yang, J., Zeng, X.C., Oxidation of a two-dimensional hexagonal boron nitride monolayer: A first-principles study (2012) Phys. Chem. Chem. Phys., 14, pp. 5545-5550
dc.relation.referencesVan Druenen, M., Davitt, F., Collins, T., Glynn, C., O'Dwyer, C., Holmes, J.D., Collins, G., Covalent Functionalization of Few-Layer Black Phosphorus Using Iodonium Salts and Comparison to Diazonium Modified Black Phosphorus (2018) Chem. Mater., 30, pp. 4667-4674
dc.relation.referencesRyder, C.R., Wood, J.D., Wells, S.A., Yang, Y., Jariwala, D., Marks, T.J., Schatz, G.C., Hersam, M.C., Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry (2016) Nat. Chem., 8, pp. 597-602
dc.relation.referencesZiletti, A., Carvalho, A., Trevisanutto, P.E., Campbell, D.K., Coker, D.F., Castro, N.A.H., Phosphorene oxides: Bandgap engineering of phosphorene by oxidation (2015) Phys. Rev. B, 91
dc.relation.referencesWild, S., Monolayer black phosphorus by sequential wet-chemical surface oxidation (2019) RSC Adv., 9, pp. 3570-3576
dc.relation.referencesGómez-Pérez, J., Barna, B., Tóth, I.Y., Kónya, Z., Kukovecz, á., Quantitative tracking of the oxidation of black phosphorus in the few-layers regime (2018) ACS Omega, 3, pp. 12482-12488
dc.relation.referencesWild, S., Lattice Opening upon Bulk Reductive Covalent Functionalization of Black Phosphorus (2019) Angew. Chem., Int. Ed., 58, pp. 5763-5768
dc.relation.referencesMarcia, M., Hirsch, A., Hauke, F., Perylene-based non-covalent functionalization of 2D materials (2017) FlatChem, 1, pp. 89-103
dc.relation.referencesEdmonds, M.T., Creating a stable oxide at the surface of black phosphorus (2015) ACS Appl. Mater. Interfaces, 7, pp. 14557-14562
dc.relation.referencesWang, C.-X., Zhang, C., Jiang, J.-W., Rabczuk, T., The Effects of Vacancy and Oxidation on Black Phosphorus Nanoresonators (2017) Nanotechnology, 28, p. 135202
dc.relation.referencesWang, G., Slough, W.J., Pandey, R., Karna, S.P., Degradation of phosphorene in air: understanding at atomic level (2016) 2D Mater., 3
dc.relation.referencesKuntz, K.L., Control of Surface and Edge Oxidation on Phosphorene (2017) ACS Appl. Mater. Interfaces, 9, pp. 9126-9135
dc.relation.referencesLv, W., Sulfur-Doped Black Phosphorus Field-Effect Transistors with Enhanced Stability (2018) ACS Appl. Mater. Interfaces, 10, pp. 9663-9668
dc.relation.referencesHsieh, Y.L., Su, W.H., Huang, C.C., Su, C.Y., In Situ Cleaning and Fluorination of Black Phosphorus for Enhanced Performance of Transistors with High Stability (2020) ACS Appl. Mater. Interfaces, 12, pp. 37375-37383
dc.relation.referencesSu, C., Waterproof molecular monolayers stabilize 2D materials (2019) Proc. Natl. Acad. Sci. U. S. A., 116, pp. 20844-20849
dc.relation.referencesCai, Y., Zhang, G., Zhang, Y.-W., Layer-dependent band alignment and work function of few-layer phosphorene (2014) Sci. Rep., 4, p. 6677
dc.relation.referencesCastellanos-Gomez, A., Isolation and characterization of few-layer black phosphorus (2014) 2D Mater., 1
dc.relation.referencesIsland, J.O., Steele, G.A., Van Der Zant, H.S.J., Castellanos-Gomez, A., Environmental instability of few-layer black phosphorus (2015) 2D Mater., 2, p. 011002
dc.relation.referencesWood, J.D., Effective Passivation of Exfoliated Black Phosphorus Transistors against Ambient Degradation (2014) Nano Lett., 14, pp. 6964-6970
dc.relation.referencesGómez-Pérez, J., Kónya, Z., Kukovecz, á., Acetone improves the topographical homogeneity of liquid phase exfoliated few-layer black phosphorus flakes (2018) Nanotechnology, 29, p. 365303
dc.relation.referencesSoler, J.M., Artacho, E., Gale, J.D., Garciá, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The SIESTA method for ab initio order-N materials simulation (2002) J. Phys. Condens. Matter, 14, pp. 2745-2779
dc.relation.referencesPerdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868
dc.relation.referencesWoomer, A.H., Farnsworth, T.W., Hu, J., Wells, R.A., Donley, C.L., Warren, S.C., Phosphorene: Synthesis, Scale-Up, and Quantitative Optical Spectroscopy (2015) ACS Nano, 9, pp. 8869-8884
dc.relation.referencesFavron, A., Photooxidation and quantum confinement effects in exfoliated black phosphorus (2015) Nat. Mater., 14, pp. 826-832
dc.relation.referencesAbellán, G., Fundamental Insights into the Degradation and Stabilization of Thin Layer Black Phosphorus (2017) J. Am. Chem. Soc., 139, pp. 10432-10440
dc.relation.referencesBrent, J.R., Ganguli, A.K., Kumar, V., Lewis, D.J., McNaughter, P.D., O'Brien, P., Sabherwal, P., Tedstone, A.A., On the stability of surfactant-stabilised few-layer black phosphorus in aqueous media (2016) RSC Adv., 6, pp. 86955-86958
dc.relation.referencesGamage, S., Li, Z., Yakovlev, V.S., Lewis, C., Wang, H., Cronin, S.B., Abate, Y., Nanoscopy of Black Phosphorus Degradation (2016) Adv. Mater. Interfaces, 3, p. 1600121
dc.relation.referencesQuintanilla, J., Hooley, C., The strong-correlations puzzle (2009) Phys. World, 22, pp. 32-37
dc.relation.referencesSibari, A., Phosphorene as a promising anode material for (Li/Na/Mg)-ion batteries: A first-principle study (2018) Sol. Energy Mater. Sol. Cells, 180, pp. 253-257
dc.relation.referencesMortazavi, B., Dianat, A., Cuniberti, G., Rabczuk, T., Application of silicene, germanene and stanene for Na or Li ion storage: A theoretical investigation (2016) Electrochim. Acta, 213, pp. 865-870
dc.relation.referencesWang, X., Liu, G., Liu, R.F., Luo, W.W., Sun, B.Z., Lei, X.L., Ouyang, C.Y., Xu, B., Molecular adsorption and strain-induced ferromagnetic semiconductor-metal transition in half-hydrogenated germanene (2019) J. Appl. Phys., 125, p. 082504
dc.relation.referencesKim, M., Kim, H., Park, S., Kim, J.S., Choi, H.J., Im, S., Lee, H., Yi, Y., Intrinsic correlation between electronic structure and degradation: From few layers to bulk black phosphorus (2019) Angew. Chem., Int. Ed., 58, pp. 3754-3758
dc.relation.referencesGreiner, M.T., Chai, L., Helander, M.G., Tang, W.M., Lu, Z.H., Transition metal oxide work functions: The influence of cation oxidation state and oxygen vacancies (2012) Adv. Funct. Mater., 22, pp. 4557-4568
dc.relation.referencesFijol, J.F., Holloway, P.H., Ohmic contacts to ZnSe-based materials (1996) Crit. Rev. Solid State Mater. Sci., 21, pp. 77-128
dc.relation.referencesYang, B., Te-Doped Black Phosphorus Field-Effect Transistors (2016) Adv. Mater., 28, pp. 9408-9415
dc.relation.referencesHan, C., Oxygen induced strong mobility modulation in few-layer black phosphorus (2017) 2D Mater., 4, p. 021007
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem