Show simple item record

dc.creatorHernández Mancera J.P.
dc.creatorNúñez-Zarur F.
dc.creatorGutiérrez-Oliva S.
dc.creatorToro-Labbé A.
dc.creatorVivas-Reyes R.
dc.date2020
dc.date.accessioned2021-02-05T14:58:06Z
dc.date.available2021-02-05T14:58:06Z
dc.identifier.issn1928651
dc.identifier.urihttp://hdl.handle.net/11407/5939
dc.descriptionQuantum chemical calculations were used to study the mechanism of Diels-Alder reactions involving chiral anthracenes as dienes and a series of dienophiles. The reaction force analysis was employed to obtain a detailed scrutiny of the reaction mechanisms, it has been found that thermodynamics and kinetics of the reactions are quite consistent: the lower the activation energy, the lower the reaction energy, thus following the Bell-Evans-Polanyi principle. It has been found that activation energies are mostly due to structural rearrangements that in most cases represented more than 70% of the activation energy. Electronic activity mostly due to changes in σ and π bonding were revealed by the reaction electronic flux (REF), this property helps identify whether changes on σ or π bonding drive the reaction. Additionally, new global indexes describing the behavior of the electronic activity were introduced and then used to classify the reactions in terms of the spontaneity of their electronic activity. Local natural bond order electronic population analysis was used to check consistency with global REF through the characterization of specific changes in the electronic density that might be responsible for the activity already detected by the REF. Results show that reactions involving acetoxy lactones are driven by spontaneous electronic activity coming from bond forming/strengthening processes; in the case of maleic anhydrides and maleimides it appears that both spontaneous and non-spontaneous electronic activity are quite active in driving the reactions. © 2020 Wiley Periodicals LLC
dc.language.isoeng
dc.publisherJohn Wiley and Sons Inc.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85087162376&doi=10.1002%2fjcc.26360&partnerID=40&md5=f7de9efcd429c79b448188de5f2fdaf7
dc.sourceJournal of Computational Chemistry
dc.subjectchiral anthracenespa
dc.subjectdiels Alders reaction mechanismsspa
dc.subjectreaction electronic flux (REF)spa
dc.subjectreaction force analysisspa
dc.titleDiels-Alder reaction mechanisms of substituted chiral anthracene: A theoretical study based on the reaction force and reaction electronic flux
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.identifier.doi10.1002/jcc.26360
dc.subject.keywordActivation analysiseng
dc.subject.keywordActivation energyeng
dc.subject.keywordAnthraceneeng
dc.subject.keywordChemical bondseng
dc.subject.keywordQuantum chemistryeng
dc.subject.keywordStereochemistryeng
dc.subject.keywordThermodynamicseng
dc.subject.keywordDiels-Alder reactioneng
dc.subject.keywordNatural bond orderseng
dc.subject.keywordPopulation analysiseng
dc.subject.keywordQuantum chemical calculationseng
dc.subject.keywordReaction electronic flux (REF)eng
dc.subject.keywordReaction electronic fluxeseng
dc.subject.keywordStructural rearrangementeng
dc.subject.keywordThermodynamics and kineticseng
dc.subject.keywordReaction kineticseng
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationHernández Mancera, J.P., Grupo de Química Cuántica y Teórica, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena, Colombia
dc.affiliationNúñez-Zarur, F., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationGutiérrez-Oliva, S., Laboratorio de Química Teórica Computacional (QTC), Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
dc.affiliationToro-Labbé, A., Laboratorio de Química Teórica Computacional (QTC), Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
dc.affiliationVivas-Reyes, R., Grupo de Química Cuántica y Teórica, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena, Colombia, Grupo CipTec, Fundación Universitaria Tecnológico de Comfenalco, Facultad de Ingenierías, Programa de Ingeniería Industrial, Cartagena de Indias, Bolivar, Colombia
dc.relation.referencesAtherton, J.C.C., Jones, S., (2001) Tetrahedron Lett., 42, p. 8239
dc.relation.referencesSanyal, A., Snyder, J.K., (2000) Organic Lett., 2, p. 2527
dc.relation.referencesVan Damme, J., Du Prez, F., (2018) Progress Polym. Sci., 82, p. 92
dc.relation.referencesFringuelli, F., Taticchi, A., (2002) The Diels-Alder reaction: Selected practical methods, , John Wiley & Sons, Ltd, Baffins Lane, Chichester
dc.relation.referencesTeixeira, M.G., Alvarenga, E.S., (2016) Mag. Reson. Chem., 54, p. 623
dc.relation.referencesAmant, A.H.S., Lemen, D., Florinas, S., Mao, S., Fazenbaker, C., Zhong, H., Wu, H., De Alaniz, J.R., (2018) Bioconjugate Chem., 29, p. 2406
dc.relation.referencesResende, G.C., Alvarenga, E.S., Willoughby, P.H., (2015) J. Mol. Struct., 1101, p. 212
dc.relation.referencesCorbett, M.S., Liu, X., Sanyal, A., Snyder, J.K., (2003) Tetrahedron Lett., 44, p. 931
dc.relation.referencesToro-Labbé, A., (1999) J. Phys. Chem. A, 103, p. 4398
dc.relation.referencesMartínez, J., Toro-Labbé, A., (2004) Chem. Phys. Lett., 392, p. 132
dc.relation.referencesGutiérrez-Oliva, S., Herrera, B., Toro-Labbé, A., Chermette, H., (2005) J. Phys. Chem. A, 109, p. 1748
dc.relation.referencesDuarte, F., Toro-Labbé, A., (2011) J. Phys. Chem. A, 115, p. 3050
dc.relation.referencesVillegas-Escobar, N., Poater, A., Solà, M., Schaefer, H.F., III, Toro-Labbé, A., (2019) Phys. Chem. Chem. Phys., 21, p. 5039
dc.relation.referencesPolitzer, P., Toro-Labbé, A., Gutiérrez-Oliva, S., Herrera, B., Jaque, P., Concha, M.C., Murray, J.S., (2005) J. Chem. Sci., 117, p. 467
dc.relation.referencesPolitzer, P., Murray, J.S., Yepes, D., Jaque, P., (2014) J. Mol. Model., 20, p. 2351
dc.relation.referencesPolitzer, P., Murray, J.S., Jaque, P., (2013) J. Mol. Model., 19, p. 4111
dc.relation.referencesRincón, E., Jaque, P., Toro-Labbé, A., (2006) J. Phys. Chem. A, 110, p. 9478
dc.relation.referencesJaque, P., Toro-Labbé, A., (2000) J. Phys. Chem. A, 104, p. 995
dc.relation.referencesMcQuarrie, D.A., Simon, J.D., (1997) Physical Chemistry: A Molecular Approach, , University Science Books, Sausalito, CA
dc.relation.referencesNguyen, T.L., Stanton, J.F., Barker, J.R., (2010) Chem. Phys. Lett., 499, p. 9
dc.relation.referencesAndres, N.J., Juan, L.B., (2000) Coleccion ciencia experimental, 2. , Universiatat Jaume I, Castellón, Spain
dc.relation.referencesPerdew, J.P., Parr, R.G., Levy, M., Balduz, J.L., (1982) Phys. Rev. Lett., 49, p. 1691
dc.relation.referencesParr, R.G., Donnelly, R.A., Levy, M., Palke, W.E., (1978) J. Chem. Phys., 68, p. 3801
dc.relation.referencesParr, R.G., Yang, W., (1989) Density-Functional Theory of Atoms and Molecules, 16. , Oxford University Press, New York, Oxford
dc.relation.referencesKoopmans, T., (1934) Physica, 1, p. 104
dc.relation.referencesJanak, J.F., (1978) Phys. Rev. B, 18, p. 7165
dc.relation.referencesGeerlings, P., De Proft, F., Langenaeker, W., (2003) Chem. Rev., 103, p. 1793
dc.relation.referencesPearson, R.G., (1985) J. Am. Chem. Soc., 107, p. 6801
dc.relation.referencesCerón, M.L., Echegaray, E., Gutiérrez-Oliva, S., Herrera, B., Toro-Labbé, A., (2011) Sci. China Chem., 54, p. 1982
dc.relation.referencesVogt-Geisse, S., Toro-Labbé, A., (2009) J. Chem. Phys., 130
dc.relation.referencesEchegaray, E., Toro-Labbé, A., (2008) J. Phys. Chem. A, 112
dc.relation.referencesHerrera, B., Toro-Labbé, A., (2007) J. Phys. Chem. A, 111, p. 5921
dc.relation.referencesFrisch, G.E.S.M.J., Trucks, G.W., Schlegel, H.B., Robb, V.B.M.A., Cheeseman, J.R., Scalmani, G., Petersson, A.V.M.G.A., Foresman, D.J.F.J.B., (2016) Gaussian 16, Rev. B.01, , 2016,, Gaussian Inc., Wallingford, CT
dc.relation.referencesZhao, Y., Truhlar, D.G., (2008) Theor. Chem. Acc., 120, p. 215
dc.relation.referencesYepes, D., Valenzuela, J., Martínez-Araya, J.I., Pérez, P., Jaque, P., (2019) Phys. Chem. Chem. Phys., 21, p. 7412
dc.relation.referencesPieniazek, S.N., Clemente, F.R., Houk, K.N., (2008) Angewandle Chem. Int. Ed., 47, p. 7746
dc.relation.referencesFukui, K., Kato, S., Fujimoto, H., (1975) J. Am. Chem. Soc., 97, p. 1
dc.relation.referencesJensen, F., (2007) Introduction to Computational Chemistry, , 2a ed., The Atrium, Southern Gate, Chichester
dc.relation.referencesGlendening, E.D., Badenhoop, J.K., Reed, A.E., Carpenter, J.E., Bohmann, J.A., Morales, C.M., Landis, C.R., Weinhold, F., (2013) Natural Bond Order 6.0, , University of Wisconsin Press, Madison
dc.relation.referencesPearson, R.G., (1990) Coord. Chem. Rev., 100, p. 403
dc.relation.referencesReed, A.E., Curtiss, L.A., Weinhold, F., (1988) Chem. Rev., 88, p. 899
dc.relation.referencesFoster, J.P., Weinhold, F., (1980) J. Am. Chem. Soc., 102, p. 7211
dc.relation.referencesEvans, M.G., Polanyi, M., (1936) Trans. Faraday Soc., 32, p. 1333
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record