Mostrar el registro sencillo del ítem

dc.creatorGutiérrez-Mosquera H.
dc.creatorMarrugo-Negrete J.
dc.creatorDíez S.
dc.creatorMorales-Mira G.
dc.creatorMontoya-Jaramillo L.J.
dc.creatorJonathan M.P.
dc.date2020
dc.date.accessioned2021-02-05T14:58:11Z
dc.date.available2021-02-05T14:58:11Z
dc.identifier.issn456535
dc.identifier.urihttp://hdl.handle.net/11407/5943
dc.descriptionTotal mercury (THg) and methylmercury (MeHg) were studied in sediments from 27 abandoned gold mining ponds (AGMPs) through small-scale artisanal gold mining in the district of San Juan in Chocó region of Colombia. The AGMPs were abandoned in the last century (1997) and were grouped into three distinct groups (2–6; 7–12; 13–20 years). Overall concentration (in ng g−1) pattern of THg in sediments varied from 39.06 to 1271.32 (avg. 209.57) with 174.81 (13–20 years), 205.56 (7–12 years) and 248.33 (2–6 years) respectively. MeHg concentrations accounted for 3.3–10.9% (avg. 6.5%) of THg and were significantly correlated with THg during all periods. Correlations between organic matter (OM) vs MeHg and THg were negative in the oldest pools, signifying a “dilution effect” or “natural burial” of THg and MeHg. Results for sequential extraction indicate that the fraction of elemental Hg (Hg-e) and organo chelated Hg (Hg-o) represent the main chemical forms of Hg in the sediments, regardless of the abandonment period, whereas the bioavailable fraction was only 0.12–1.65% of THg. The significant statistical relationship between MeHg, THg and OM suggests that these parameters control the distribution, mobility, toxicity and bioavailability of Hg in the sediments of these abandoned ponds. Evaluation of THg with sediment quality guidelines indicates that the values are on the higher side for Threshold effect concentration and Upper continental crust. Comparing of MeHg with many other regions outside Colombia is a worrying factor and needs immediate attention to protect the human health. © 2020 Elsevier Ltd
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85086445311&doi=10.1016%2fj.chemosphere.2020.127319&partnerID=40&md5=880281005a62835a68e6e97102f54b66
dc.sourceChemosphere
dc.subjectColombiaspa
dc.subjectFractionationspa
dc.subjectGold minesspa
dc.subjectMercuryspa
dc.subjectMethylmercuryspa
dc.subjectSedimentsspa
dc.titleDistribution of chemical forms of mercury in sediments from abandoned ponds created during former gold mining operations in Colombia
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambientalspa
dc.identifier.doi10.1016/j.chemosphere.2020.127319
dc.relation.citationvolume258
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationGutiérrez-Mosquera, H., Facultad de Ingeniería, Universidad Tecnológica del Chocó, Carrera 22 No.18B-10, Quibdó, Colombia, Facultad de Ingeniería, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, Colombia
dc.affiliationMarrugo-Negrete, J., Departamento de Química, Facultad de Ciencias Básicas, Grupo de Agua, Química Aplicada y Ambiental, Universidad de Córdoba, Carrera 6 No. 76-103, Montería, Córdoba, Colombia
dc.affiliationDíez, S., Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, E-08034, Spain
dc.affiliationMorales-Mira, G., Facultad de Ingeniería, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, Colombia
dc.affiliationMontoya-Jaramillo, L.J., Facultad de Ingeniería, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, Colombia
dc.affiliationJonathan, M.P., Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD), Instituto Politécnico Nacional (IPN), Calle 30 de Junio de 1520, Barrio la Laguna Ticomán, Del. Gustavo A. Madero, Ciudad de Mexico, C.P.07340, Mexico
dc.relation.referencesBenoit, G., Mercury in dated sediment cores from coastal ponds of St Thomas, USVI (2018) Mar. Pollut. Bull., 126, pp. 535-539
dc.relation.referencesBiester, H., Gosar, M., Covelli, S., Occurrence and fractionation of mercury species derived from dumped mining residues in sediments of the Idrija mining area (2000) Environ. Sci. Technol., 34, pp. 3330-3336
dc.relation.referencesBiester, H., Muller, G., Scholer, H.F., Binding and mobility of mercury in soils contaminated by emissions from chlor-alkali plants (2002) Sci. Total Environ., 284, pp. 191-203
dc.relation.referencesBloom, N.S., Preus, E., Katon, J., Hiltner, M., Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils (2003) Anal. Chim. Acta, 479, pp. 233-248
dc.relation.referencesBoszke, L., Kowalski, A., Glosinska, G., Szarek, R., Siepak, J., Environmental factors affecting speciation of mercury in the bottom sediments
dc.relation.referencesan overview (2003) Pol. J. Environ. Stud., 12 (1), pp. 5-13
dc.relation.referencesBoszke, L., Kowalski, A., Siepak, J., Grain size partitioning of mercury in sediments of the Middle Odra River (Germany/Poland) (2004) Water Air Soil Pollut., 159, pp. 125-138
dc.relation.referencesBouyoucos, G.J., Hydrometer method improved for making particle size analysis of soils (1962) Agron. J., 54, pp. 464-465. , 1962
dc.relation.referencesBravo, A.G., Bouchet, S., Tolu, J., Björn, E., Mateos-Rivera, A., Bertilsson, S., Molecular composition of organic matter controls methylmercury formation in boreal lakes (2017) Nat. Commun., 8, pp. 142-155
dc.relation.referencesCampbell, P., Lewis, A., Chapman, P., Luoma, S., Stokes, P., Biologically Available Metals in Sediments (1988), p. 298p. , National Research Council of Canada (NRCC) Otawa
dc.relation.referencesCaricchia, A.M., Minervini, G., Soldati, P., Chiavarini, S., Ubaldi, C., Morabito, R., GC-ECD determination of methylmercury in sediment samples using a SPB-608 capillary column after alkaline digestion (1997) Microchem. J., 55, pp. 44-55
dc.relation.referencesCesar, R., Egler, S., Polivanov, H., Castilhos, Z., Rodrigues, A.P., Mercury, copper and zinc contamination in soils and fluvial sediments from an abandoned gold mining area in southern Minas Gerais State, Brazil (2011) Environmental Earth Sciences, 64 (1), pp. 211-222
dc.relation.referencesChen, X., Ji, H., Yang, W., Zhu, B., Ding, H., Speciation and distribution of mercury in soils around gold mines located upstream of Miyun Reservoir, Beijing, China (2016) J. Geochem. Explor., 163, pp. 1-9
dc.relation.referencesChing, I.L., Hongxiao, T., Chemical studies of aquatic pollution by heavy metals in China (1985) Environmental Inorganic Chemistry, pp. 359-371. , K.J. Irgolic A.E. Martel VCH Deerfield Beach
dc.relation.referencesCoquery, M., Welbourn, P.M., The relationship between metal concentration and organic matter in sediments and metal concentration in the aquatic macrophyte Eriocaulon septangulare (1995) Water Res., 29 (9), pp. 2094-2102
dc.relation.referencesDavidson, C.M., Urquhart, G.J., Ajmone-Marsan, F., Biasioli, M., Duarte, A., Diaz-Barrientos, E., Fractionation of potentially toxic elements in urban soils from five European cities by means of a harmonized sequential extraction procedure (2006) Anal. Chim. Acta, 565, pp. 63-72
dc.relation.referencesDeLaune, R., Jugsujinda, A., Devai, I., Patrick, W., Jr., Relationship of sediment redox conditions to methyl mercury in surface sediment of Louisiana lakes (2004) Environ. Sci. Health, 39 (8), pp. 1925-1933
dc.relation.referencesDíez, S., Human health effects of methylmercury exposure (2009) Rev. Environ. Contam. Toxicol., 198, pp. 111-132
dc.relation.referencesDong, A., Zhai, S., Louchouarn, P., Izon, G., Zhang, H., Jiang, X., The distribution and accumulation of mercury and methylmercury in surface sediments beneath the East China Sea (2018) Environ. Sci. Pollut. Control Ser.
dc.relation.referencesFilgueiras, A.V., Lavilla, I., Bendicho, C., Chemical sequential extraction for metal partitioning in environmental solid samples (2002) J. Environ. Monit., 4, pp. 823-857
dc.relation.referencesGerson, J.R., Driscoll, C.T., Hsu-Kim, H., Bernhardt, E.S., Senegalese artisanal gold mining leads to elevated total mercury and methylmercury concentrations in soils, sediments, and rivers (2018) Elem Sci Anth, 6, p. 11
dc.relation.referencesGómez Tapias, J., Almanza Meléndez, M.F., Mapa Geológico de Colombia (2015), p. 2694513. , Servicio Geológico Colombiano
dc.relation.referencesGreen, C., Lewis, P.J., Wozniak, J.R., Drevnick, P.E., Thies, M.L., A comparison of factors affecting the small-scale distribution of mercury from artisanal small-scale gold mining in a Zimbabwean stream system (2019) Sci. Total Environ., 647, pp. 400-410
dc.relation.referencesGuedron, S., Grangeon, S., Lanson, B., Grimaldi, M., Mercury speciation in a tropical soil association
dc.relation.referencesconsequence of gold mining on Hg distribution in French Guiana (2009) Geoderma, 153, pp. 331-346
dc.relation.referencesGuimarães, J.R.D., Malm, O., Pfeiffer, W.C., A simplified radiochemical tech- nique for measurements of net mercury methylation rates in aquatic systems near goldmining areas, Amazon, Brazil (1995) Sci. Total Environ., 175 (2), p. 151e162
dc.relation.referencesHammerschmidt, C.R., Fitzgerald, W.F., Geochemical controls on the production and distribution of methylmercury in near-shore marine sediments (2004) Environ. Sci. Technol., 38, pp. 1487-1495
dc.relation.referencesHan, Y., Kingston, H.M., Boylan, H.M., Rahman, G.M.M., Shah, S., Richter, R.C., Speciation of mercury in soil and sediment by selective solvent and acid extraction (2003) Anal. Bioanal. Chem., 375, pp. 428-436
dc.relation.referencesHerrero Ortega, S., Catal, N., Bjorn, E., Grontoft, H., Geir Hilmarsson, T., Bertilsson, S., Wu, P., Bravo, A., High methylmercury formation in ponds fueled by fresh humic and algal derived organic matter (2018) Limnol. Oceanogr.
dc.relation.referencesHesterberg, D., Chouw, J.W., Hutchinson, K.J., Sayers, D.E., Bonding of Hg(II) to reduced organic sulphur in humic acid as affected by S/Hg ratio (2001) Environ. Sci. Technol., 35, p. 2741
dc.relation.referencesHinton, J.J., Veiga, M.M., Veiga, A.T., Clean artisanal gold mining: a utopian approach? (2003) J. Clean. Prod., 11 (2), pp. 99-115
dc.relation.referencesHodson, P.V., Norris, K., Berquist, M., Campbell, L.M., Ridal, J.J., Mercury concentrations in amphipods and fish of the Saint Lawrence River (Canada) are unrelated to concentrations of legacy mercury in sediments (2014) Sci. Total Environ., 494-495, pp. 218-228
dc.relation.referencesHorvat, M., Mercury as a global pollutant (2002) Anal. Bioanal. Chem., 374, pp. 981-982
dc.relation.referencesIkingura, J.R., Akagib, H., Methylmercury production and distribution in aquatic systems (1999) Sci. Total Environ., 234, pp. 109-118
dc.relation.referencesIkingura, J.R., Akagib, H., Messo, C., Environmental assessment of mercury dispersion, transformation and bioavailability in the Lake Victoria Goldfields, Tanzania (2006) J. Environ. Manag., 81, pp. 167-173
dc.relation.referencesIssaro, N., Abi-Ghanem, C., Bermond, A., Fractionation studies of mercury in soils and sediments: a review of the chemical reagents used for mercury extraction (2009) Anal. Chim. Acta, 1-12
dc.relation.referencesKelly, C.A., Rudd, J.W.M., Bodaly, R.A., Roulet, N.P., StLouis, V.L., Heyes, A., Moore, T.R., Edwards, G., Increases in fluxes of greenhouse gases and methylmercury following flooding of an experimental reservoir (1997) Environ. Sci. Technol., 31, pp. 1334-1344
dc.relation.referencesKim, M., Han, S., Gieskes, J., Deheyn, D.D., Importance of organic matter lability for monomethylmercury production in sulfate-rich marine sediments (2011) Sci. Total Environ., 409 (4), pp. 778-784
dc.relation.referencesKot, F.S., Mercury in chemical fractions of recent pelagic sediments of the Sea of Japan (2004) J. Environ. Monit., 6, pp. 689-695
dc.relation.referencesKothawala, D., Stedmon, C., Muler, R., Weyhenmeyer, G., Kohler, S., Tranvik, L.J., Controls of dissolved organic matter quality: evidence from a large-scale boreal lake survey (2014) Global Change Biol., 20, pp. 1101-1114
dc.relation.referencesKrupadam, R., Ahuja, R., Wate, S., Heavy metal binding fractions in the sediments of the Godavari estuary, East Coast of India (2007) Environ. Model. Assess., 12, pp. 145-155
dc.relation.referencesLacerda, L.D., Salomons, W., Mercury from Gold and Silver Mining. A Chemical Time Bomb? (1998), p. 146. , Springer Verlag Berlin
dc.relation.referencesLei, P., Zhong, H., Duan, D., Pan, K., A review on mercury biogeochemistry in mangrove sediments: hotspots of methylmercury production? (2019) Sci. Total Environ., 680, pp. 140-150
dc.relation.referencesLeiva, M.A., Morales, S., Environmental assessment of mercury pollution in urban tailings from gold mining (2013) Ecotoxicol. Environ. Saf., 90, pp. 167-173
dc.relation.referencesLino, A.S., Kasper, D., Guida, Y.S., Thomaz, J.R., Malm, O., Total and methyl mercury distribution in water, sediment, plankton and fish along the Tapajos River basin in the Brazilian Amazon (2019) Chemosphere, 235, pp. 690-700
dc.relation.referencesLiu, G., Cabrera, J., Allen, M., Cai, Y., Mercury characteristics in soil samples collected nearby the DOE Oak Ridge reservation utilizing sequential extraction and thermal desorption method (2006) Sci. Total Environ., 309, pp. 384-392
dc.relation.referencesLucotte, M., Montgomery, S., Begin, M., Mercury dynamics at the flooded soil-water interface in reservoirs of Northern Québec: in situ observations (1999) Mercury in the Biogeochemical Cycle, Natural Environments and Hydroelectric Reservoirs of Northern Quebec, p. 334. , M. Lucotte et al. (eds.) Springer Berlin, New York
dc.relation.referencesLusilao-Makiese, J.G., Tessier, E., Amouroux, D., Tutu, H., Chimuka, L., Weiersbye, I., Cukrowska, E.M., Mercury speciation and dispersion from an active gold mine at the West Wits area, South Africa (2016) Environ. Monit. Assess., 188 (1), pp. 1-11
dc.relation.referencesMac Donald, D., Ingersoll, C., Berger, T., Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems (2000) Arch. Environ. Contam. Toxicol., 39, pp. 20-31
dc.relation.referencesMale, Y.T., Reichelt-Brushett, Amanda, J., Pocock, M., Nanlohy, A., Recent mercury contamination from artisanal gold mining on Buru Island, Indonesia – potential future risks to environmental health and food safety (2013) Mar. Pollut. Bull., 77, pp. 428-433
dc.relation.referencesMalehase, T., Daso, A.P., Okonkwo, J.O., Determination of mercury and its fractionation products in samples from legacy use of mercury amalgam in gold processing in Randfontein, South Africa (2016) Emerg. Contaminants, 2, pp. 157-165
dc.relation.referencesMarrugo-Negrete, J.L., Pinedo-Hernández, J., Díez, S., Geochemistry of mercury in tropical swamps impacted by gold mining (2015) Chemosphere, 134, pp. 44-51
dc.relation.referencesMason, R.P., Baumann, Z., Hansen, G., Yao, K.M., Coulibaly, M., Coulibaly, S., An assessment of the impact of artisanal and commercial gold mining on mercury and methylmercury levels in the environment and fish in Cote d'Ivoire (2019) Sci. Total Environ., 665, pp. 1158-1167
dc.relation.referencesMeech, J.A., Veiga, M.M., Tromans, D., Reactivity of mercury from gold mining activities in darkwater ecosystems (1998) Ambio, 27, pp. 92-98
dc.relation.referencesMunthe, J., Bodaly, R.A., Branfireun, B.A., Driscoll, C.T., Gilmour, C.C., Harris, R., Recovery of mercury-contaminated fisheries (2007) Ambio, 36, pp. 33-44
dc.relation.referencesMuresan, B., Cossa, D., Richard, S., Dominique, Y., Monomethylmercury sources in a tropical artificial reservoir (2008) Appl. Geochem., 23 (5), pp. 1101-1126
dc.relation.referencesNartey, V.K., Klake, R.K., Doamekpor, L.K., Sarpong-Kumankomah, S., Speciation of mercury in mine waste: case study of abandoned and active gold mine sites at the Bibiani– Anwiaso–Bekwai area of South Western Ghana (2012) Environ. Monit. Assess., 184, pp. 7623-7634
dc.relation.referencesNiane, B., Mortiz, R., Guédron, S., Ngom, P.M., Pfeifer, H.R., Mall, I., Poté, J., Effect of recent artisanal small-scale gold mining on the contamination of surface river sediment: case of Gambia River, Kedougou region, southeastern Senegal (2014) J. Geochem. Explor., 144, pp. 517-527
dc.relation.referencesO'Connor, D., Hou, D., Ok, Y.S., Mulder, J., Duan, L., Wu, Q., Wang, S., Rinklebe, J., Mercury speciation, transformation and transportation in soils, atmospheric flux and implications for risk management: a critical review (2019) Environ. Int., 126, pp. 747-761
dc.relation.referencesOdumo, B.O., Carbonell, G., Angeyo, H.K., Patel, J.P., Torrijos, M., Rodríguez Martín, J.A., Impact of gold mining associated with mercury contamination in soil, biota sediments and tailings in Kenya (2014) Environ. Sci. Pollut. Control Ser., 21 (21), pp. 12426-12435
dc.relation.referencesPinedo-Hernández, J., Marrugo-Negrete, J., Díez, S., Speciation and bioavailability of mercury in sediments impacted by gold mining in Colombia (2015) Chemosphere, 119, pp. 1289-1295
dc.relation.referencesPestana, M.H.D., Lechler, P., Formoso, M.L.L., Miller, J., Mercury in sediments from gold and copper exploitation areas in the Ä River Basin, Southern Brazil Camaqua (2000) J. S. Am. Earth Sci., 13, pp. 537-547
dc.relation.referencesPestana, I.A., Bastos, W.R., Almeida, M.G., Mussy, M.H., Souza, C.M., Methylmercury in environmental compartments of a hydroelectric reservoir in the Western Amazon, Brazil (2019) Chemosphere, 215, pp. 758-765
dc.relation.referencesPfeiffer, W.C., Lacerda, L.D., Salomons, W., Malm, O., Environmental fate of mercury from gold mining in the Brazilian Amazon (1993) Environ. Rev., 1, pp. 26-37
dc.relation.referencesRamasamy, E.V., Toms, A., Shylesh, C.M.S., Jayasooryan, K.K., Mahesh, M., Mercury fractionation in the sediments of Vembanad wetland, west coast of India (2012) Environ. Geochem. Health, 34, pp. 575-586
dc.relation.referencesReid, W.V., Biodiversity hotspots (1998) Trends Ecol. Evol., 13, pp. 275-280
dc.relation.referencesReis, A.T., Rodrigues, S.M., Davidson, C.M., Pereira, E., Duarte, A.C., Extractability and mobility of mercury from agricultural soils surrounding industrial and mining contaminated areas (2010) Chemosphere, 81 (11), pp. 1369-1377
dc.relation.referencesRodríguez, L., Ruiz, E., Alonso-Azcárate, J., Rincón, J., Heavy metal distribution and chemical speciation in tailings and soils around a Pb–Zn mine in Spain (2009) J. Environ. Manag., 90, pp. 1106-1116
dc.relation.referencesRoy, V., Amyot, M., Carignan, R., Beaver ponds increase methylmercury concentrations in Canadian shield streams along vegetation and pond-age gradients (2009) Environ. Sci. Technol., 43, pp. 5605-5611
dc.relation.referencesRudd, J.W.M., Bodaly, R.A., Fisher, N.S., Kelly, C.A., Kopec, D., Whipple, C., Fifty years after its discharge, methylation of legacy mercury trapped in the Penobscot Estuary sustains high mercury in biota (2018) Sci. Total Environ., 642, pp. 1340-1352
dc.relation.referencesRudnick, R.L., Gao, S., 4.1 - composition of the continental crust (2014) Treatise on Geochemistry, 4, pp. 1-51. , 2014 second ed
dc.relation.referencesSalazar-Camacho, C., Salas-Moreno, M., Marrugo-Madrid, S., Marrugo-Negrete, J.L., Díez, S., Dietary human exposure to mercury in two artisanal small-scale gold mining communities of northwestern Colombia (2017) Environ. Int., 107, pp. 47-54
dc.relation.referencesSantos-Francés, F., García-Sánchez, A., Alonso-Rojo, P., Contreras, F., Adams, M., Distribution and mobility of mercury in soils of a gold mining region, Cuyuni river basin, Venezuela (2011) J. Environ. Manag., 92 (4), pp. 1268-1276
dc.relation.referencesShi, J., Lianga, L., Jianga, G., Jin, X., The speciation and bioavailability of mercury in sediments of Haihe River, China (2005) Environ. Int., 31, pp. 357-365
dc.relation.referencesSt Louis, V.L., Kelly, C.A., Duchemin, É., Rudd, J.W.M., Rosenberg, D.M., Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate (2000) Bioscience, 50, p. 9
dc.relation.referencesSunderland, E.M., Gobas, F., Branfireun, B.A., Heyes, A., Environmental controls on the speciation and distribution of mercury in coastal sediments (2006) Mar. Chem., 102, pp. 111-123
dc.relation.referencesTomiyasu, T., Matsuyama, A., Imura, R., Kodamatani, H., Miyamoto, J., Kono, Y., Kocman, D., Horvat, M., The distribution of total and methylmercury concentrations in soils near the Idrija mercury mine, Slovenia, and the dependence of the mercury concentrations on the chemical composition and organic carbon levels of the soil (2012) Environ. Earth Sci., 65, pp. 1309-1322
dc.relation.referencesUllrich, S., Tanton, T., Abdrashitova, S., Mercury in the aquatic environment: a review of factors affecting methylation (2001) Crit. Rev. Environ. Sci. Technol., 31, pp. 241-293
dc.relation.referencesGlobal Mercury Assessment 2013: Sources, Emissions, Releases and Environmental Transport (2013), p. 44p. , UNEP Chemicals Branch Geneva, Switzerland
dc.relation.referencesMethod 7471B for Determination of Mercury in Solid or Semisolid Waste (1998), U.S. Environmental Protection Agency Cincinnati, OH
dc.relation.referencesPriority pollutant list (2015), https://www.epa.gov/sites/production/files/2015-09/documents/priority-pollutant-list-epa.pdf, (Accessed 15 August 2016)
dc.relation.referencesVarejão, E.V.V., Bellato, C.R., Fontes, M.P.F., Mercury fractionation in the stream sediments from the Quadrilátero Ferrífero gold mining region, Minas Gerais State, Brazil (2009) Environ. Monit. Assess., 157, pp. 125-135
dc.relation.referencesValois, H., Sucesión primaria y ecología de la revegetación de selvas degradadas por minería en el Chocó, Colombia: bases para su restauración ecológica (2016), Universidad de Valladolid Tesis Doctoral
dc.relation.referencesVan Straaten, P., Mercury contamination associated with small-scale gold mining in Tanzania and Zimbabwe (2000) Sci. Total Environ., 259 (1-3), pp. 105-113
dc.relation.referencesVeiga, M.M., Baker, R.F., Protocols for Environmental and Health Assessment of Mercury Released by Artisanal and Small-Scale Gold Miners (2004), p. 294p. , GEF/UNDP/UNIDO Vienna, Austria
dc.relation.referencesVeiga, M.M., Angeloci-santos, G., Meech, J.A., The Extractive Industries and Society Review of barriers to reduce mercury use in artisanal gold mining (2014) Biochem. Pharmacol., 1 (2), pp. 351-361
dc.relation.referencesWallschlager, D., Desai, M.V.M., Spengler, M., Windmoler, C.C., Wilken, R.D., Mercury speciation in floodplain soils and sediments along a contaminated river transect (1998) J. Environ. Qual., 27, pp. 1034-1044
dc.relation.referencesWang, F., Chen, J., Relation of sediment characteristics to trace metal concentrations: a statistical study (2000) Water Res., 34, pp. 694-698
dc.relation.referencesWang, Q., Kim, D., Dionysiou, D.D., Sorial, G.A., Timberlake, D., Sources and remediation for mercury contamination in aquatic systems—a literature review (2004) Environ. Pollut., 131, pp. 323-336
dc.relation.referencesWinfrey, M.R., Rudd, J.W.M., Environmental factors affecting the formation of methylmercury in low pH lakes: a review (1990) Environ. Contam. Toxicol., 9, pp. 853-869
dc.relation.referencesWu, H., Ding, Z., Liu, Y., Liu, J., Yan, H., Pan, J., Li, L., Lu, H., Methylmercury and sulfate-reducing bacteria in mangrove sediments from Jiulong River Estuary, China (2011) J. Environ. Sci., 23 (1), pp. 14-21
dc.relation.referencesXia, K., Skyllberg, U.L., Bleam, W.F., Bloom, R.P., Nater, E.A., Helmke, P.A., X-ray absorption spectroscopic evidence for the complexation of Hg(II) by reduced sulfur in soil humic substances (1999) Environ. Sci. Technol., 33, pp. 257-261
dc.relation.referencesYuan, C.G., Wang, T.F., Song, Y.F., Chang, A.L., Total mercury and sequential extracted mercury in soil near a coal-fired power plant (2010) Fresenius Environ. Bull., 19, pp. 2857-2863
dc.relation.referencesYong-kui, Y., Zhang, C., Xiao-jun, S., Ding-Yong, W., Effect of organic matter and pH on mercury release from soils (2007) J. Environ. Sci., 19 (11), pp. 1349-1354
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem