dc.creator | Palacio L.C. | |
dc.creator | Ugarte J.P. | |
dc.creator | Saiz J. | |
dc.creator | Tobón C. | |
dc.date | 2020 | |
dc.date.accessioned | 2021-02-05T14:58:18Z | |
dc.date.available | 2021-02-05T14:58:18Z | |
dc.identifier.isbn | 9783030618339 | |
dc.identifier.issn | 18650929 | |
dc.identifier.uri | http://hdl.handle.net/11407/5963 | |
dc.description | Atrial remodeling is a widely acknowledged process that accelerates the susceptibility to and progression of atrial fibrillation. An increasingly recognized structural component is atrial fibrosis. Recent studies have shown that air pollution increases the risk of heart arrhythmias, where the exposure to particulate matter (PM) contributes to the generation of myocardial fibrosis, increasing the cardiovascular risk. The density and patterns of fibrosis (interstitial, compact and diffuse) are relevant in abnormal conduction and vulnerability to cardiac arrhythmias. Taking into account that fibrosis has been widely reported as one of the consequences of PM exposure, in this work, we evaluated the effects of low and high diffuse fibrosis density on conduction velocity and arrhythmic propagation patterns. For this purpose, cellular models of atrial myocyte and fibroblast were implemented in a 3D model of the human atria. Low (6.25%) and high (25%) fibrosis densities were simulated in the left atrium and its effect on conduction velocity and fibrillatory dynamics was evaluated. Results showed a conduction velocity reduction of 71% associated with a high fibrosis density. At low fibrosis density, few reentries were observed. On the other hand, at high fibrosis density, irregular propagation patterns, characterized by multiple wavelets and rotors, were observed. Our results suggest that high diffuse fibrosis density is associated with a significant conduction velocity reduction and with chaotic propagation patterns during atrial fibrillation. © 2020, Springer Nature Switzerland AG. | |
dc.language.iso | eng | |
dc.publisher | Springer Science and Business Media Deutschland GmbH | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094125733&doi=10.1007%2f978-3-030-61834-6_25&partnerID=40&md5=e03a170ed38f94b299efb68c1a0ccd22 | |
dc.source | Communications in Computer and Information Science | |
dc.subject | 3D models | spa |
dc.subject | Air pollution | spa |
dc.subject | Atrial fibrillation | spa |
dc.subject | Fibrosis | spa |
dc.title | Genesis of Atrial Fibrillation Under Different Diffuse Fibrosis Density Related with Atmospheric Pollution. In-Silico Study | |
dc.type | Conference Paper | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.identifier.doi | 10.1007/978-3-030-61834-6_25 | |
dc.subject.keyword | 3D modeling | eng |
dc.subject.keyword | Air pollution | eng |
dc.subject.keyword | Cell culture | eng |
dc.subject.keyword | Velocity | eng |
dc.subject.keyword | Atmospheric pollution | eng |
dc.subject.keyword | Atrial fibrillation | eng |
dc.subject.keyword | Cardiovascular risk | eng |
dc.subject.keyword | Conduction velocity | eng |
dc.subject.keyword | Myocardial fibrosis | eng |
dc.subject.keyword | Particulate Matter | eng |
dc.subject.keyword | Propagation pattern | eng |
dc.subject.keyword | Structural component | eng |
dc.subject.keyword | Diseases | eng |
dc.relation.citationvolume | 1274 CCIS | |
dc.relation.citationstartpage | 291 | |
dc.relation.citationendpage | 301 | |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.affiliation | Palacio, L.C., MATBIOM, Universidad de Medellín, Medellín, Colombia | |
dc.affiliation | Ugarte, J.P., GIMSC, Universidad de San Buenaventura, Medellín, Colombia | |
dc.affiliation | Saiz, J., CI2B, Universitat Politècnica de València, Valencia, Spain | |
dc.affiliation | Tobón, C., MATBIOM, Universidad de Medellín, Medellín, Colombia | |
dc.relation.references | Nattel, S., Harada, M., Atrial remodeling and atrial fibrillation: Recent advances and translational perspectives (2014) J. Am. Coll. Cardiol., 63, pp. 2335-2345 | |
dc.relation.references | Kottkamp, H., Human atrial fibrillation substrate: Towards a specific fibrotic atrial cardiomy-opathy (2013) Eur. Heart J., 34, pp. 2731-2738 | |
dc.relation.references | Jalife, J., Mother rotors and fibrillatory conduction: A mechanism of atrial fibrillation (2002) Cardiovasc. Res., 54, pp. 204-216. , https://doi.org/10.1016/S0008-6363(02)00223-7 | |
dc.relation.references | Wijffels, M.C., Kirchhof, C.J., Dorland, R., Allessie, M.A., Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats (1995) Circulation, 92, pp. 1954-1968 | |
dc.relation.references | Allessie, M., Ausma, J., Schotten, U., Electrical, contractile and structural remodeling during atrial fibrillation (2002) Cardiovasc. Res., 54, pp. 230-246 | |
dc.relation.references | Newby, D.E., Mannucci, P.M., Tell, G.S., Baccarelli, A.A., Brook, R.D., Donaldson, K., Forastiere, F., Storey, R.F., ESC working group on thrombosis, european association for cardiovascular prevention and rehabilitation, ESC heart failure association: Expert position paper on air pollution and cardiovascular disease (2015) Eur. Heart J., 36, pp. 83-93b | |
dc.relation.references | Liu, Y., Goodson, J.M., Zhang, B., Chin, M.T., Air pollution and adverse cardiac remodeling: Clinical effects and basic mechanisms (2015) Front. Physiol., 6, p. 162 | |
dc.relation.references | Brook, R.D., Rajagopalan, S., Pope, C.A., Brook, J.R., Bhatnagar, A., Diez-Roux, A.V., Holguin, F., Kaufman, J.D., Particulate matter air pollution and cardiovascular disease (2010) Circulation, 121, pp. 2331-2378 | |
dc.relation.references | de Oliveira-Fonoff, A.M., Mady, C., Pessoa, F.G., Fonseca, K.C.B., Salemi, V.M.C., Fernan-Des, F., Saldiva, P.H.N., Ramires, F.J.A., The role of air pollution in myocardial remodeling (2017) Plos ONE, 12 | |
dc.relation.references | Burstein, B., Qi, X.Y., Yeh, Y.H., Calderone, A., Nattel, S., Atrial cardiomyocyte tachycardia alters cardiac fibroblast function: A novel consideration in atrial remodeling (2007) Cardiovasc. Res., 76, pp. 442-452 | |
dc.relation.references | de Jong, S., van Veen, T.A.B., van Rijen, H.V.M., de Bakker, J.M.T., Fibrosis and Cardiac Arrhythmias (2011) J. Cardiovasc. Pharmacol, 57, pp. 630-638 | |
dc.relation.references | Akoum, N., Daccarett, M., McGann, C., Segerson, N., Vergara, G., Kuppahally, S., Badger, T., Marrouche, N., Atrial fibrosis helps select the appropriate patient and strategy in catheter ablation of atrial fibrillation: A DE-MRI guided approach (2011) J. Cardiovasc. Electrophysiol., 22, pp. 16-22 | |
dc.relation.references | Rücker-Martin, C., Pecker, F., Godreau, D., Hatem, S.N., Dedifferentiation of atrial myocytes during atrial fibrillation: Role of fibroblast proliferation in vitro (2002) Cardiovasc. Res., 55, pp. 38-52 | |
dc.relation.references | Rohr, S., Myofibroblasts in diseased hearts: New players in cardiac arrhythmias? (2009) Hear. Rhythm., 6, pp. 848-856 | |
dc.relation.references | Xu, J., Cui, G., Esmailian, F., Plunkett, M., Marelli, D., Ardehali, A., Odim, J., Sen, L., Atrial extracellular matrix remodeling and the maintenance of atrial fibrillation (2004) Circulation, 109, pp. 363-368 | |
dc.relation.references | Zahid, S., Cochet, H., Boyle, P.M., Schwarz, E.L., Whyte, K.N., Vigmond, E.J., Jaı, P., Haı, M., Patient-derived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern (2016) Cardiovasc. Res., 110 (3), pp. 443-454 | |
dc.relation.references | Courtemanche, M., Ramirez, R.J., Nattel, S., Ionic mechanisms underlying human atrial action potential properties: Insights from a mathematical model Ionic mechanisms underlying human atrial action potential properties: Insights from a mathematical model (1998) Am. J. Physiol.-Heart Circ. Physiol., 275, pp. H301-H321 | |
dc.relation.references | Kneller, J., Zou, R., Vigmond, E.J., Wang, Z., Leon, L.J., Nattel, S., Cholinergic atrial fibrillation in a computer model of a two-dimensional sheet of canine atrial cells with realistic ionic properties (2002) Circ. Res., 90, pp. E73-E87 | |
dc.relation.references | Ferrer, A., Sebastián, R., Sánchez-Quintana, D., Rodríguez, J.F., Detailed anatomical and electrophysiological models of human atria and torso for the simulation of atrial activation (2015) Plos One, 10 (11), pp. 1-29 | |
dc.relation.references | van Wagoner, D.R., Pond, A.L., Lamorgese, M., Rossie, S.S., McCarthy, P.M., Nerbonne, J.M., Atrial L-type Ca2+currents and human atrial fibrillation (1999) Circ. Res., 85, pp. 428-436 | |
dc.relation.references | Caballero, R., de la Fuente, M.G., Gómez, R., Barana, A., Amorós, I., Dolz-Gaitón, P., Osuna, L., Delpón, E., In humans, chronic atrial fibrillation decreases the transient outward current and ultrarapid component of the delayed rectifier current differentially on each atria and increases the slow component of the delayed rectifier current in both (2010) J. Am. Coll. Cardiol., 55, pp. 2346-2354 | |
dc.relation.references | Maccannell, K.A., Bazzazi, H., Chilton, L., Shibukawa, Y., Clark, R.B., Giles, W.R., A mathematical model of electrotonic interactions between ventricular myocytes and fibroblasts (2007) Biophys. J., 92 (11), pp. 4121-4132 | |
dc.relation.references | Tobón, C., Ruiz-Villa, C., Heidenreich, E., Romero, L., Hornero, F., Saiz, J., A three-dimensional human atrial model with fiber orientation electrograms and arrhythmic activation patterns relationship (2013) Plos One, 8 | |
dc.relation.references | Godoy, E.J., Lozano, M., García-Fernández, I., Ferrer-Albero, A., Macleod, R., Saiz, J., Sebastian, R., Atrial fibrosis hampers non-invasive localization of atrial ectopic foci from multi-electrode signals: A 3D simulation study (2018) Front. Physiol., 9, p. 404 | |
dc.relation.references | Martinez-Mateu, L., Romero, L., Ferrer-Albero, A., Sebastian, R., Rodríguez Matas, J.F., Jalife, J., Berenfeld, O., Saiz, J., Factors affecting basket catheter detection of real and phantom rotors in the atria: A computational study (2018) Plos Comput. Biol., 14 | |
dc.relation.references | Gomez, J.F., Cardona, K., Martinez, L., Saiz, J., Trenor, B., Electrophysiological and structural remodeling in heart failure modulate arrhythmogenesis. 2D simulation study (2014) PLOS ONE, 9, pp. 1-12 | |
dc.relation.references | Daccarett, M., Badger, T.J., Akoum, N., Burgon, N.S., Mahnkopf, C., Vergara, G., Kholmovski, E., Marrouche, N.F., Association of left atrial fibrosis detected by delayed-enhancement magnetic resonance imaging and the risk of stroke in patients with atrial fibrillation (2011) J. Am. Coll. Cardiol., 57, pp. 831-838 | |
dc.relation.references | Heidenreich, E.A., Ferrero, J.M., Doblaré, M., Rodríguez, J.F., Adaptive macro finite elements for the numerical solution of monodomain equations in cardiac electrophysiology (2010) Ann. Biomed. Eng., 38, pp. 2331-2345 | |
dc.relation.references | Brook, R.D., Rajagopalan, S., Pope, C.A., Brook, J.R., Bhatnagar, A., Diez-Roux, A.V., Holguin, F., Kaufman, J.D., Particulate matter air pollution and cardiovascular disease (2010) Circulation, 121, pp. 2331-2378 | |
dc.relation.references | Wold, L.E., Ying, Z., Hutchinson, K.R., Velten, M., Gorr, M.W., Velten, C., Youtz, D.J., Rajagopalan, S., Cardiovascular remodeling in response to long-term exposure to fine particulate matter air pollution (2012) Circ. Heart Fail., 5, pp. 452-461 | |
dc.relation.references | Chen, T.-L., Liao, J.-W., Chan, W.-H., Hsu, C.-Y., Yang, J.-D., Ueng, T.-H., Induction of cardiac fibrosis and transforming growth factor-β1 by motorcycle exhaust in rats (2013) Inhal. Toxicol., 25, pp. 525-535 | |
dc.relation.references | Gaudesius, G., Miragoli, M., Thomas, S.P., Rohr, S., Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin (2003) Circ. Res., 93, pp. 421-428 | |
dc.relation.references | Burstein, B., Nattel, S., Atrial fibrosis: Mechanisms and clinical relevance in atrial fibrillation (2008) J. Am. Coll. Cardiol., 51, pp. 802-809 | |
dc.relation.references | Poulet, C., Künzel, S., Büttner, E., Lindner, D., Westermann, D., Ravens, U., Altered physiological functions and ion currents in atrial fibroblasts from patients with chronic atrial fibrillation (2016) Physiol. Rep., 4 | |
dc.relation.references | Camelliti, P., Borg, T.K., Kohl, P., (2005) Structural and Functional Characterisation of Cardiac Fibroblasts, , https://pubmed.ncbi.nlm.nih.gov/15621032/ | |
dc.relation.references | Zhan, H.Q., Xia, L., Shou, G.F., Zang, Y.L., Liu, F., Crozier, S., Fibroblast proliferation alters cardiac excitation conduction and contraction: A computational study (2014) J. Zhejiang Univ. Sci. B., 15, pp. 225-242 | |
dc.relation.references | Maleckar, M.M., Greenstein, J.L., Giles, W.R., Trayanova, N.A., Electrotonic coupling between human atrial myocytes and fibroblasts alters myocyte excitability and repolarization (2009) Biophys. J., 97, pp. 2179-2190 | |
dc.relation.references | Xie, Y., Garfinkel, A., Camelliti, P., Kohl, P., Weiss, J.N., Qu, Z., Effects of fibroblast-myocyte coupling on cardiac conduction and vulnerability to reentry: A computational study (2009) Hear. Rhythm., 6, pp. 1641-1649 | |
dc.relation.references | Morgan, R., Colman, M.A., Chubb, H., Seemann, G., Aslanidi, O.V., Slow conduction in the border zones of patchy fibrosis stabilizes the drivers for atrial fibrillation: Insights from multi-scale human atrial modeling (2016) Front. Physiol., 7, pp. 1-15 | |
dc.relation.references | King, J.H., Huang, C.L.-H., Fraser, J.A., Determinants of myocardial conduction velocity: Implications for arrhythmogenesis (2013) Front. Physiol., 4 (154) | |
dc.relation.references | Krul, S.P.J., Berger, W.R., Smit, N.W., van Amersfoorth, S.C.M., Driessen, A.H.G., van Boven, W.J., Fiolet, J.W.T., de Groot, J.R., Atrial fibrosis and conduction slowing in the left atrial appendage of patients undergoing thoracoscopic surgical pulmonary vein isolation for atrial fibrillation (2015) Circ. Arrhythmia Electrophysiol., 8, pp. 288-295 | |
dc.relation.references | Haissaguerre, M., Shah, A.J., Cochet, H., Hocini, M., Dubois, R., Efimov, I., Vigmond, E., Trayanova, N., Intermittent drivers anchoring to structural heterogeneities as a major pathophysiological mechanism of human persistent atrial fibrillation (2016) J. Physiol., 594, pp. 2387-2398 | |
dc.relation.references | Xiao, H.D., Fuchs, S., Campbell, D.J., Lewis, W., Dudley, S.C., Kasi, V.S., Hoit, B.D., Bernstein, K.E., Mice with cardiac-restricted angiotensin-converting enzyme (ACE) have atrial enlargement, cardiac arrhythmia, and sudden death (2004) Am. J. Pathol., 165, pp. 1019-1032 | |
dc.relation.references | Anyukhovsky, E., Sosunov, E.A., Plotnikov, A., Gainullin, R.Z., Jhang, J.S., Marboe, C.C., Rosen, M.R., Cellular electrophysiologic properties of old canine atria provide a substrate for arrhythmogenesis (2002) Cardiovasc. Res., 54, pp. 462-469 | |
dc.relation.references | Tanaka, K., Zlochiver, S., Vikstrom, K.L., Yamazaki, M., Moreno, J., Klos, M., Zaitsev, A.V., Kalifa, J., Spatial distribution of fibrosis governs fibrillation wave dynamics in the posterior left atrium during heart failure (2007) Circ. Res., 101, pp. 839-847 | |
dc.relation.references | Saha, M., Roney, C.H., Bayer, J.D., Meo, M., Cochet, H., Dubois, R., Vigmond, E.J., Wavelength and fibrosis affect phase singularity locations during atrial fibrillation (2018) Front, Physiol | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/other | |