Show simple item record

dc.creatorPalacio L.C.
dc.creatorUgarte J.P.
dc.creatorSaiz J.
dc.creatorTobón C.
dc.date2020
dc.date.accessioned2021-02-05T14:58:18Z
dc.date.available2021-02-05T14:58:18Z
dc.identifier.isbn9783030618339
dc.identifier.issn18650929
dc.identifier.urihttp://hdl.handle.net/11407/5963
dc.descriptionAtrial remodeling is a widely acknowledged process that accelerates the susceptibility to and progression of atrial fibrillation. An increasingly recognized structural component is atrial fibrosis. Recent studies have shown that air pollution increases the risk of heart arrhythmias, where the exposure to particulate matter (PM) contributes to the generation of myocardial fibrosis, increasing the cardiovascular risk. The density and patterns of fibrosis (interstitial, compact and diffuse) are relevant in abnormal conduction and vulnerability to cardiac arrhythmias. Taking into account that fibrosis has been widely reported as one of the consequences of PM exposure, in this work, we evaluated the effects of low and high diffuse fibrosis density on conduction velocity and arrhythmic propagation patterns. For this purpose, cellular models of atrial myocyte and fibroblast were implemented in a 3D model of the human atria. Low (6.25%) and high (25%) fibrosis densities were simulated in the left atrium and its effect on conduction velocity and fibrillatory dynamics was evaluated. Results showed a conduction velocity reduction of 71% associated with a high fibrosis density. At low fibrosis density, few reentries were observed. On the other hand, at high fibrosis density, irregular propagation patterns, characterized by multiple wavelets and rotors, were observed. Our results suggest that high diffuse fibrosis density is associated with a significant conduction velocity reduction and with chaotic propagation patterns during atrial fibrillation. © 2020, Springer Nature Switzerland AG.
dc.language.isoeng
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85094125733&doi=10.1007%2f978-3-030-61834-6_25&partnerID=40&md5=e03a170ed38f94b299efb68c1a0ccd22
dc.sourceCommunications in Computer and Information Science
dc.subject3D modelsspa
dc.subjectAir pollutionspa
dc.subjectAtrial fibrillationspa
dc.subjectFibrosisspa
dc.titleGenesis of Atrial Fibrillation Under Different Diffuse Fibrosis Density Related with Atmospheric Pollution. In-Silico Study
dc.typeConference Papereng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.identifier.doi10.1007/978-3-030-61834-6_25
dc.subject.keyword3D modelingeng
dc.subject.keywordAir pollutioneng
dc.subject.keywordCell cultureeng
dc.subject.keywordVelocityeng
dc.subject.keywordAtmospheric pollutioneng
dc.subject.keywordAtrial fibrillationeng
dc.subject.keywordCardiovascular riskeng
dc.subject.keywordConduction velocityeng
dc.subject.keywordMyocardial fibrosiseng
dc.subject.keywordParticulate Mattereng
dc.subject.keywordPropagation patterneng
dc.subject.keywordStructural componenteng
dc.subject.keywordDiseaseseng
dc.relation.citationvolume1274 CCIS
dc.relation.citationstartpage291
dc.relation.citationendpage301
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationPalacio, L.C., MATBIOM, Universidad de Medellín, Medellín, Colombia
dc.affiliationUgarte, J.P., GIMSC, Universidad de San Buenaventura, Medellín, Colombia
dc.affiliationSaiz, J., CI2B, Universitat Politècnica de València, Valencia, Spain
dc.affiliationTobón, C., MATBIOM, Universidad de Medellín, Medellín, Colombia
dc.relation.referencesNattel, S., Harada, M., Atrial remodeling and atrial fibrillation: Recent advances and translational perspectives (2014) J. Am. Coll. Cardiol., 63, pp. 2335-2345
dc.relation.referencesKottkamp, H., Human atrial fibrillation substrate: Towards a specific fibrotic atrial cardiomy-opathy (2013) Eur. Heart J., 34, pp. 2731-2738
dc.relation.referencesJalife, J., Mother rotors and fibrillatory conduction: A mechanism of atrial fibrillation (2002) Cardiovasc. Res., 54, pp. 204-216. , https://doi.org/10.1016/S0008-6363(02)00223-7
dc.relation.referencesWijffels, M.C., Kirchhof, C.J., Dorland, R., Allessie, M.A., Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats (1995) Circulation, 92, pp. 1954-1968
dc.relation.referencesAllessie, M., Ausma, J., Schotten, U., Electrical, contractile and structural remodeling during atrial fibrillation (2002) Cardiovasc. Res., 54, pp. 230-246
dc.relation.referencesNewby, D.E., Mannucci, P.M., Tell, G.S., Baccarelli, A.A., Brook, R.D., Donaldson, K., Forastiere, F., Storey, R.F., ESC working group on thrombosis, european association for cardiovascular prevention and rehabilitation, ESC heart failure association: Expert position paper on air pollution and cardiovascular disease (2015) Eur. Heart J., 36, pp. 83-93b
dc.relation.referencesLiu, Y., Goodson, J.M., Zhang, B., Chin, M.T., Air pollution and adverse cardiac remodeling: Clinical effects and basic mechanisms (2015) Front. Physiol., 6, p. 162
dc.relation.referencesBrook, R.D., Rajagopalan, S., Pope, C.A., Brook, J.R., Bhatnagar, A., Diez-Roux, A.V., Holguin, F., Kaufman, J.D., Particulate matter air pollution and cardiovascular disease (2010) Circulation, 121, pp. 2331-2378
dc.relation.referencesde Oliveira-Fonoff, A.M., Mady, C., Pessoa, F.G., Fonseca, K.C.B., Salemi, V.M.C., Fernan-Des, F., Saldiva, P.H.N., Ramires, F.J.A., The role of air pollution in myocardial remodeling (2017) Plos ONE, 12
dc.relation.referencesBurstein, B., Qi, X.Y., Yeh, Y.H., Calderone, A., Nattel, S., Atrial cardiomyocyte tachycardia alters cardiac fibroblast function: A novel consideration in atrial remodeling (2007) Cardiovasc. Res., 76, pp. 442-452
dc.relation.referencesde Jong, S., van Veen, T.A.B., van Rijen, H.V.M., de Bakker, J.M.T., Fibrosis and Cardiac Arrhythmias (2011) J. Cardiovasc. Pharmacol, 57, pp. 630-638
dc.relation.referencesAkoum, N., Daccarett, M., McGann, C., Segerson, N., Vergara, G., Kuppahally, S., Badger, T., Marrouche, N., Atrial fibrosis helps select the appropriate patient and strategy in catheter ablation of atrial fibrillation: A DE-MRI guided approach (2011) J. Cardiovasc. Electrophysiol., 22, pp. 16-22
dc.relation.referencesRücker-Martin, C., Pecker, F., Godreau, D., Hatem, S.N., Dedifferentiation of atrial myocytes during atrial fibrillation: Role of fibroblast proliferation in vitro (2002) Cardiovasc. Res., 55, pp. 38-52
dc.relation.referencesRohr, S., Myofibroblasts in diseased hearts: New players in cardiac arrhythmias? (2009) Hear. Rhythm., 6, pp. 848-856
dc.relation.referencesXu, J., Cui, G., Esmailian, F., Plunkett, M., Marelli, D., Ardehali, A., Odim, J., Sen, L., Atrial extracellular matrix remodeling and the maintenance of atrial fibrillation (2004) Circulation, 109, pp. 363-368
dc.relation.referencesZahid, S., Cochet, H., Boyle, P.M., Schwarz, E.L., Whyte, K.N., Vigmond, E.J., Jaı, P., Haı, M., Patient-derived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern (2016) Cardiovasc. Res., 110 (3), pp. 443-454
dc.relation.referencesCourtemanche, M., Ramirez, R.J., Nattel, S., Ionic mechanisms underlying human atrial action potential properties: Insights from a mathematical model Ionic mechanisms underlying human atrial action potential properties: Insights from a mathematical model (1998) Am. J. Physiol.-Heart Circ. Physiol., 275, pp. H301-H321
dc.relation.referencesKneller, J., Zou, R., Vigmond, E.J., Wang, Z., Leon, L.J., Nattel, S., Cholinergic atrial fibrillation in a computer model of a two-dimensional sheet of canine atrial cells with realistic ionic properties (2002) Circ. Res., 90, pp. E73-E87
dc.relation.referencesFerrer, A., Sebastián, R., Sánchez-Quintana, D., Rodríguez, J.F., Detailed anatomical and electrophysiological models of human atria and torso for the simulation of atrial activation (2015) Plos One, 10 (11), pp. 1-29
dc.relation.referencesvan Wagoner, D.R., Pond, A.L., Lamorgese, M., Rossie, S.S., McCarthy, P.M., Nerbonne, J.M., Atrial L-type Ca2+currents and human atrial fibrillation (1999) Circ. Res., 85, pp. 428-436
dc.relation.referencesCaballero, R., de la Fuente, M.G., Gómez, R., Barana, A., Amorós, I., Dolz-Gaitón, P., Osuna, L., Delpón, E., In humans, chronic atrial fibrillation decreases the transient outward current and ultrarapid component of the delayed rectifier current differentially on each atria and increases the slow component of the delayed rectifier current in both (2010) J. Am. Coll. Cardiol., 55, pp. 2346-2354
dc.relation.referencesMaccannell, K.A., Bazzazi, H., Chilton, L., Shibukawa, Y., Clark, R.B., Giles, W.R., A mathematical model of electrotonic interactions between ventricular myocytes and fibroblasts (2007) Biophys. J., 92 (11), pp. 4121-4132
dc.relation.referencesTobón, C., Ruiz-Villa, C., Heidenreich, E., Romero, L., Hornero, F., Saiz, J., A three-dimensional human atrial model with fiber orientation electrograms and arrhythmic activation patterns relationship (2013) Plos One, 8
dc.relation.referencesGodoy, E.J., Lozano, M., García-Fernández, I., Ferrer-Albero, A., Macleod, R., Saiz, J., Sebastian, R., Atrial fibrosis hampers non-invasive localization of atrial ectopic foci from multi-electrode signals: A 3D simulation study (2018) Front. Physiol., 9, p. 404
dc.relation.referencesMartinez-Mateu, L., Romero, L., Ferrer-Albero, A., Sebastian, R., Rodríguez Matas, J.F., Jalife, J., Berenfeld, O., Saiz, J., Factors affecting basket catheter detection of real and phantom rotors in the atria: A computational study (2018) Plos Comput. Biol., 14
dc.relation.referencesGomez, J.F., Cardona, K., Martinez, L., Saiz, J., Trenor, B., Electrophysiological and structural remodeling in heart failure modulate arrhythmogenesis. 2D simulation study (2014) PLOS ONE, 9, pp. 1-12
dc.relation.referencesDaccarett, M., Badger, T.J., Akoum, N., Burgon, N.S., Mahnkopf, C., Vergara, G., Kholmovski, E., Marrouche, N.F., Association of left atrial fibrosis detected by delayed-enhancement magnetic resonance imaging and the risk of stroke in patients with atrial fibrillation (2011) J. Am. Coll. Cardiol., 57, pp. 831-838
dc.relation.referencesHeidenreich, E.A., Ferrero, J.M., Doblaré, M., Rodríguez, J.F., Adaptive macro finite elements for the numerical solution of monodomain equations in cardiac electrophysiology (2010) Ann. Biomed. Eng., 38, pp. 2331-2345
dc.relation.referencesBrook, R.D., Rajagopalan, S., Pope, C.A., Brook, J.R., Bhatnagar, A., Diez-Roux, A.V., Holguin, F., Kaufman, J.D., Particulate matter air pollution and cardiovascular disease (2010) Circulation, 121, pp. 2331-2378
dc.relation.referencesWold, L.E., Ying, Z., Hutchinson, K.R., Velten, M., Gorr, M.W., Velten, C., Youtz, D.J., Rajagopalan, S., Cardiovascular remodeling in response to long-term exposure to fine particulate matter air pollution (2012) Circ. Heart Fail., 5, pp. 452-461
dc.relation.referencesChen, T.-L., Liao, J.-W., Chan, W.-H., Hsu, C.-Y., Yang, J.-D., Ueng, T.-H., Induction of cardiac fibrosis and transforming growth factor-β1 by motorcycle exhaust in rats (2013) Inhal. Toxicol., 25, pp. 525-535
dc.relation.referencesGaudesius, G., Miragoli, M., Thomas, S.P., Rohr, S., Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin (2003) Circ. Res., 93, pp. 421-428
dc.relation.referencesBurstein, B., Nattel, S., Atrial fibrosis: Mechanisms and clinical relevance in atrial fibrillation (2008) J. Am. Coll. Cardiol., 51, pp. 802-809
dc.relation.referencesPoulet, C., Künzel, S., Büttner, E., Lindner, D., Westermann, D., Ravens, U., Altered physiological functions and ion currents in atrial fibroblasts from patients with chronic atrial fibrillation (2016) Physiol. Rep., 4
dc.relation.referencesCamelliti, P., Borg, T.K., Kohl, P., (2005) Structural and Functional Characterisation of Cardiac Fibroblasts, , https://pubmed.ncbi.nlm.nih.gov/15621032/
dc.relation.referencesZhan, H.Q., Xia, L., Shou, G.F., Zang, Y.L., Liu, F., Crozier, S., Fibroblast proliferation alters cardiac excitation conduction and contraction: A computational study (2014) J. Zhejiang Univ. Sci. B., 15, pp. 225-242
dc.relation.referencesMaleckar, M.M., Greenstein, J.L., Giles, W.R., Trayanova, N.A., Electrotonic coupling between human atrial myocytes and fibroblasts alters myocyte excitability and repolarization (2009) Biophys. J., 97, pp. 2179-2190
dc.relation.referencesXie, Y., Garfinkel, A., Camelliti, P., Kohl, P., Weiss, J.N., Qu, Z., Effects of fibroblast-myocyte coupling on cardiac conduction and vulnerability to reentry: A computational study (2009) Hear. Rhythm., 6, pp. 1641-1649
dc.relation.referencesMorgan, R., Colman, M.A., Chubb, H., Seemann, G., Aslanidi, O.V., Slow conduction in the border zones of patchy fibrosis stabilizes the drivers for atrial fibrillation: Insights from multi-scale human atrial modeling (2016) Front. Physiol., 7, pp. 1-15
dc.relation.referencesKing, J.H., Huang, C.L.-H., Fraser, J.A., Determinants of myocardial conduction velocity: Implications for arrhythmogenesis (2013) Front. Physiol., 4 (154)
dc.relation.referencesKrul, S.P.J., Berger, W.R., Smit, N.W., van Amersfoorth, S.C.M., Driessen, A.H.G., van Boven, W.J., Fiolet, J.W.T., de Groot, J.R., Atrial fibrosis and conduction slowing in the left atrial appendage of patients undergoing thoracoscopic surgical pulmonary vein isolation for atrial fibrillation (2015) Circ. Arrhythmia Electrophysiol., 8, pp. 288-295
dc.relation.referencesHaissaguerre, M., Shah, A.J., Cochet, H., Hocini, M., Dubois, R., Efimov, I., Vigmond, E., Trayanova, N., Intermittent drivers anchoring to structural heterogeneities as a major pathophysiological mechanism of human persistent atrial fibrillation (2016) J. Physiol., 594, pp. 2387-2398
dc.relation.referencesXiao, H.D., Fuchs, S., Campbell, D.J., Lewis, W., Dudley, S.C., Kasi, V.S., Hoit, B.D., Bernstein, K.E., Mice with cardiac-restricted angiotensin-converting enzyme (ACE) have atrial enlargement, cardiac arrhythmia, and sudden death (2004) Am. J. Pathol., 165, pp. 1019-1032
dc.relation.referencesAnyukhovsky, E., Sosunov, E.A., Plotnikov, A., Gainullin, R.Z., Jhang, J.S., Marboe, C.C., Rosen, M.R., Cellular electrophysiologic properties of old canine atria provide a substrate for arrhythmogenesis (2002) Cardiovasc. Res., 54, pp. 462-469
dc.relation.referencesTanaka, K., Zlochiver, S., Vikstrom, K.L., Yamazaki, M., Moreno, J., Klos, M., Zaitsev, A.V., Kalifa, J., Spatial distribution of fibrosis governs fibrillation wave dynamics in the posterior left atrium during heart failure (2007) Circ. Res., 101, pp. 839-847
dc.relation.referencesSaha, M., Roney, C.H., Bayer, J.D., Meo, M., Cochet, H., Dubois, R., Vigmond, E.J., Wavelength and fibrosis affect phase singularity locations during atrial fibrillation (2018) Front, Physiol
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/other


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record