Mostrar el registro sencillo del ítem

dc.creatorTulupenko V.
dc.creatorAkimov V.
dc.creatorDemediuk R.
dc.creatorTiutiunnyk A.
dc.creatorDuque C.
dc.creatorSushchenko D.
dc.creatorFomina O.
dc.creatorMorales A.
dc.creatorLaroze D.
dc.date2020
dc.date.accessioned2021-02-05T14:58:19Z
dc.date.available2021-02-05T14:58:19Z
dc.identifier.isbn9781728197135
dc.identifier.urihttp://hdl.handle.net/11407/5965
dc.descriptionThe effect of a transversal electric field on the impurity binding energy and the energy differences between the space-quantized subbands of center delta-doped SiGe/Si quantum well structure is studied numerically with a self-consistent method. The result is explained in terms of the concurrent effects of impurity ionization and the applied field. The predicted phenomenon can be used to tune the energy distances and, accordingly, the working frequencies of possible optical devices. © 2020 IEEE.
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85086315234&doi=10.1109%2fELNANO50318.2020.9088792&partnerID=40&md5=256145e6427d0fe839538ecb1a8c929f
dc.source2020 IEEE 40th International Conference on Electronics and Nanotechnology, ELNANO 2020 - Proceedings
dc.subjectelectric fieldspa
dc.subjectmodulation dopingspa
dc.subjectshallow impurityspa
dc.subjectSiGe quantum wellsspa
dc.titleHydrogenic Impurity States in a Delta-Layer Within Quantum Wells in a Transversal Electric Field
dc.typeConference Papereng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.identifier.doi10.1109/ELNANO50318.2020.9088792
dc.subject.keywordBinding energyeng
dc.subject.keywordElectric fieldseng
dc.subject.keywordLight polarizationeng
dc.subject.keywordNanotechnologyeng
dc.subject.keywordQuantum theoryeng
dc.subject.keywordSiliconeng
dc.subject.keywordEffects of impuritieseng
dc.subject.keywordEnergy differenceseng
dc.subject.keywordHydrogenic impuritieseng
dc.subject.keywordImpurity binding energyeng
dc.subject.keywordQuantum well structureseng
dc.subject.keywordSelf-consistent methodeng
dc.subject.keywordTransversal electric fieldeng
dc.subject.keywordWorking frequencyeng
dc.subject.keywordSemiconductor quantum wellseng
dc.relation.citationstartpage109
dc.relation.citationendpage113
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationTulupenko, V., Donbas State Engineering Academy, Physics Department, Kramatorsk, Ukraine
dc.affiliationAkimov, V., Facultad de Ciencias Basicas, Universidad de Medellín, Grupo de Materia Condensada-UdeA, Universidad de Antioquia, Medellín, Colombia
dc.affiliationDemediuk, R., Donbas State Engineering Academy, Physics Department, Kramatorsk, Ukraine
dc.affiliationTiutiunnyk, A., Instituto de Alta Investigación, CEDENNA, Universidad de Tarapacá, Arica, Chile
dc.affiliationDuque, C., Grupo de Materia Condensada-UdeA, Universidad de Antioquia, Medellin, Colombia
dc.affiliationSushchenko, D., Donbas State Engineering Academy, Physics Department, Kramatorsk, Ukraine
dc.affiliationFomina, O., Donbas State Engineering Academy, Physics Department, Kramatorsk, Ukraine
dc.affiliationMorales, A., Grupo de Materia Condensada-UdeA, Universidad de Antioquia, Medellin, Colombia
dc.affiliationLaroze, D., Instituto de Alta Investigación, CEDENNA, Universidad de Tarapacá, Arica, Chile
dc.relation.referencesHan, R., Filling the gap: Silicon terahertz integrated circuits offer our best bet (2019) IEEE Microwave Magazine, 20 (4), pp. 80-93
dc.relation.referencesBastard, G., Hydrogenic impurity states in a quantum well: A simple model (1981) Phys. Rev. B, 24, p. 4714
dc.relation.referencesSchneider, H., Liu, H.C., (2007) Quantum Well Infrared Photodetectors. Physics and Applications, , Springer
dc.relation.referencesFaist, J., Capasso, F., Quantum cascade laser (1994) Science, 264 (5158), pp. 553-556
dc.relation.referencesZeng, Y., Qiang, B., Wang, Q.J., Photonic engineering technology for the development of terahertz quantum cascade lasers (2020) Adv. Opt. Mat., 8, p. 1900573
dc.relation.referencesTulupenko, V., Abramov, A., Belichenko, Y., Akimov, V., The influence of the ionized impurity delta-layer potential in the quantum well on impurity binding energy (2011) Journal of Applied Physics, 109, p. 064303
dc.relation.referencesZhou, H., Deng, Z.-Y., Electronic and hydrogenic impurity states in a corner under an applied electric field (1997) J. Phys.: Condens. Matter, 9, pp. 1241-1248
dc.relation.referencesKasapoglu, E., Sari, H., Sokmen, I., Binding energy of hydrogenic impurities in a quantum well under the tilted magnetic field (2003) Solid State Communications, 125 (7), pp. 17-22
dc.relation.referencesAharonyan, K.H., Kokanyan, E.P., Aillerie, M., Screened shallow impurity properties of quantum well heterosystems with high-? Dielectric barrier environment (2019) Physica e, 113, pp. 47-53
dc.relation.referencesBaser, P., Altuntas, I., Elagoz, S., The hydrostatic pressure and temperature effects on hydrogenic impurity binding energies in gaas/inxga1-xas/gaas square quantum well (2016) Superlattices Microstruct., 92, pp. 210-216
dc.relation.referencesTulupenko, V., Duque, C.A., Demedyuk, R., On the possibility of tuning the energy separation between space-quantized levels in a quantum well (2012) Philosophical Magazine Letters, 93, pp. 42-49
dc.relation.referencesTulupenko, V., Duque, C., Demedyuk, R., On some new effects in delta-doped qws (2015) Physica e, 66, pp. 162-169
dc.relation.referencesDuque, C.A., Akimov, V., Demediuk, R., Intersubband linear and nonlinear optical response of the delta-doped sige quantum well (2015) Superlattices Microstruct., 87, pp. 125-130
dc.relation.referencesTulupenko, V., Duque, C.A., Akimov, V., Demediuk, R., On intersubband absorption of radiation in delta-doped qws (2015) Physica E: Low-dimensional Systems and Nanostructures, 74, pp. 400-406
dc.relation.referencesBlom, A., Odnoblyudov, M.A., Yassievich, I.N., Chao, K.-A., Donor states in modulation-doped si/sige heterostructures (2003) Phys.Rev.B, 68, p. 165338
dc.relation.referencesBir, G.L., Pikus, G.E., (1974) Symmetry and Strain-Induced Effects in Semiconductors, , Wiley, New York
dc.relation.referencesVinter, B., Influence of charged impurities on si inversion-layer electrons (1982) Phys. Rev. B, 26, p. 6808
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/other


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem