Mostrar el registro sencillo del ítem

dc.creatorUngan F.
dc.creatorBahar M.K.
dc.creatorMartinez-Orozco J.C.
dc.creatorMora-Ramos M.E.
dc.date2020
dc.date.accessioned2021-02-05T14:58:26Z
dc.date.available2021-02-05T14:58:26Z
dc.identifier.issn15694410
dc.identifier.urihttp://hdl.handle.net/11407/5988
dc.descriptionIn the present work, some optical properties related to intersubband transitions in finite depth asymmetric hyperbolic-type quantum wells are theoretically investigated. The use of a hyperbolic potential configuration would account for the actual – non abrupt – confinement potential in the heterostructure, in the case of modulated growing or when compositional diffusion across the interfaces turns out to be relevant. In the investigation, the presence of externally applied electromagnetic fields is considered. Electron conduction band states are determined within the parabolic band an effective mass approximation. With the electronic structure information at hand, it is possible to evaluate the linear and third-order nonlinear light absorption and relative refractive index change coefficients, from expression arising in the framework of the compact density matrix approach. According to the theoretical outcome, it is found that: (i) There is a significant influence of the structural configuration on the magnitude and resonant peak position of the total optical coefficients. (ii) Under the effect of increasing external electric and magnetic fields, the peak energy positions are shifted towards higher values, whereas their amplitude decrease for the optical absorption case, and that of the refractive index relative variation is reduced. From these results it can be concluded that both the modification of the confinement profile and the presence of electric and/or magnetic fields are suitable tool to control the optical response of asymmetric hyperbolic-type semiconductor quantum wells. © 2020 Elsevier B.V.
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85089952313&doi=10.1016%2fj.photonics.2020.100833&partnerID=40&md5=bf1c2db627e5b07dcdbbb2ab2a4ab673
dc.sourcePhotonics and Nanostructures - Fundamentals and Applications
dc.subjectAsymmetric quantum wellspa
dc.subjectElectric fieldspa
dc.subjectMagnetic fieldspa
dc.subjectNonlinear optical responsespa
dc.titleOptical responses in asymmetric hyperbolic-type quantum wells under the effect of external electromagnetic fields
dc.typeRevieweng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.identifier.doi10.1016/j.photonics.2020.100833
dc.subject.keywordElectromagnetic fieldseng
dc.subject.keywordElectronic structureeng
dc.subject.keywordLight absorptioneng
dc.subject.keywordMagnetic fieldseng
dc.subject.keywordRefractive indexeng
dc.subject.keywordCompact-density-matrix approacheng
dc.subject.keywordCompositional diffusioneng
dc.subject.keywordEffective mass approximationeng
dc.subject.keywordElectric and magnetic fieldseng
dc.subject.keywordExternal electromagnetic fieldeng
dc.subject.keywordIntersubband transitionseng
dc.subject.keywordRefractive index changeseng
dc.subject.keywordStructural configurationseng
dc.subject.keywordSemiconductor quantum wellseng
dc.relation.citationvolume41
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationUngan, F., Faculty of Technology, Department of Optical Engineering, Sivas Cumhuriyet University, Sivas, 58140, Turkey
dc.affiliationBahar, M.K., Faculty of Science, Department of Physics, Sivas Cumhuriyet University, Sivas, 58140, Turkey
dc.affiliationMartinez-Orozco, J.C., Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad esquina con Paseo la Bufa S/N, Zacatecas, Zac. C.P. 98060, Mexico
dc.affiliationMora-Ramos, M.E., Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos CP 62209, Mexico, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.relation.referencesKarabulut, I., Paspalakis, E., (2016) Physica E, 81, pp. 294-301
dc.relation.referencesLi, K., Guo, K., Jiang, X., Hu, M., (2017) Optik, 132, pp. 375-381
dc.relation.referencesDiroll, B.T., Chen, M., Coropceanu, I., Williams, K.R., Talapin, D.V., Sionnest, P.G., Schaller, R.D., (2019) Nat. Commun., 10, p. 4511
dc.relation.referencesDakhlaoui, H., Nefzi, M., (2019) Results Phys., 15, p. 102618
dc.relation.referencesNoverola-Gamas, H., Gaggero-Sager, L.M., Oubram, O., (2019) Chin. Phys. B, 28, p. 124207
dc.relation.referencesZhao, Q., Aqiqi, S., You, J.F., Kria, M., Guo, K.X., Feddi, E., Zhang, Z.H., Yuan, J.H., (2020) Physica E, 115, p. 113707
dc.relation.referencesRojas-Briseño, J.G., Del Río-De Santiago, A., Mora-Ramos, M.E., Martínez-Orozco, J.C., (2020) Optik, 201, p. 163431
dc.relation.referencesRi Betancourt-Riera, Re Betancourt-Riera, L.A., Ferrer-Moreno, A.D., Sanu-Ginerte, (2019) Physica B, 575, p. 411700
dc.relation.referencesAmiri, B., Belghachi, A., (2020) Optik, 202, p. 163554
dc.relation.referencesYildirim, H., (2019) Physica B, 571, pp. 26-31
dc.relation.referencesChen, Y.Y., Li, Y.N., Wan, R.G., Yan, H.W., (2019) Phys. Lett. A, 383, p. 125921
dc.relation.referencesPanda, S., Das, T., Panda, B.K., (2019) Superlattices Microstruct., 135, p. 106238
dc.relation.referencesMassoudi, I., (2019) Superlattices Microstruct., 136, p. 106299
dc.relation.referencesHien, N.D., Duque, C.A., Feddi, E., Hieu, N.V., Trien, H.D., Phuong, L.T.T., Hoi, B.D., Phuc, H.V., (2019) Thin Solid Films, 682, pp. 10-17
dc.relation.referencesZhang, Z.H.J., Guo, K.X., Yuan, J.H., (2019) Physica E, 108, pp. 238-243
dc.relation.referencesAlmansour, S., (2019) J. Korean Phys. Soc., 75, pp. 806-810
dc.relation.referencesYou, J.F., Zhao, Q., Zhang, Z.H., Yuan, J.H., Guo, K.X., Feddi, E., (2019) Int. J. Mod. Phys. B, 33, p. 1950325
dc.relation.referencesZhang, C., Min, C., Zhao, B., (2019) Phys. Lett. A, 383, p. 125983
dc.relation.referencesPham, K.D., Dinh, L., Vinh, P.T., Duque, C.A., Phuc, H.V., Nguyen, C.V., (2018) Superlattices Microstruct., 120, p. 738
dc.relation.referencesGuang-Hui, W., Kang-Xian, G., Qi, G., (2003) Commun. Theor. Phys., 39, p. 377
dc.relation.referencesXia, J.-B., Fan, W.-J., (1989) Phys. Rev. B, 40, pp. 8508-8515
dc.relation.referencesUngan, F., Pal, S., Bahar, M.K., Mora-Ramos, M.E., (2019) Superlattices Microstruct., 130, pp. 76-86
dc.relation.referencesUngan, F., Martinez-Orozco, J.C., Restrepo, R.L., Mora-Ramos, M.E., (2019) Optik, 185, pp. 881-887
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/review


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem