Mostrar el registro sencillo del ítem

dc.creatorZapata-Hernandez C.
dc.creatorDurango-Giraldo G.
dc.creatorTobón C.
dc.creatorBuitrago-Sierra R.
dc.date2020
dc.date.accessioned2021-02-05T14:58:28Z
dc.date.available2021-02-05T14:58:28Z
dc.identifier.issn496979
dc.identifier.urihttp://hdl.handle.net/11407/5992
dc.descriptionParticulate matter (PM) is a complex mixture of particles that changes over time and from place to place; however, most PM is caused by the fuel combustion of motor vehicles and industry. PM is associated with acute and chronic illnesses, such as pulmonary and cardiovascular diseases. Medellín is one of the most polluted cities in Latin America. Therefore, the physicochemical characterization of its PM is necessary to understand its composition and effect on human health. In this study, PM was characterized by scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS) analysis, Fourier infrared spectroscopy (FTIR), inductivity-coupled plasma optical emission spectrometry (ICP-OES), and thermogravimetric analysis (TGA) in order to evaluate its morphology and chemical composition. The SEM of the PM exhibited primary particles and agglomerates. The size of the particles ranged between 0.056 and 4.5 μm. The EDS revealed elements such as carbon, silicon, calcium, lead, and iron. Furthermore, carbon monoxide, carbon dioxide, and carbonyl and aliphatic functional groups were observed by means of FTIR. Additionally, weight losses associated with volatile matter and elemental carbon were identified in the TGA analysis. The TGA and FTIR confirmed the presence of fuel and lubricant traces. Subsequently, lead was selected among the most common components in the PM in order to conduct an in silico study into its effect on ventricular activity. Lead showed a pro-arrhythmic effect by shortening the duration of the action potential under normal electrophysiological conditions, which could be associated with cardiovascular diseases. © 2020, Springer Nature Switzerland AG.
dc.language.isoeng
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85091723868&doi=10.1007%2fs11270-020-04884-5&partnerID=40&md5=5ca695496e211a2dc0083713d70cd486
dc.sourceWater, Air, and Soil Pollution
dc.subjectAir pollutionspa
dc.subjectComputer simulationspa
dc.subjectHeart diseasesspa
dc.subjectParticulate matter compositionspa
dc.titlePhysicochemical Characterization of Airborne Particulate Matter in Medellín, Colombia, and its Use in an In Silico Study of Ventricular Action Potential
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.identifier.doi10.1007/s11270-020-04884-5
dc.subject.keywordCarbon dioxideeng
dc.subject.keywordCarbon monoxideeng
dc.subject.keywordCardiologyeng
dc.subject.keywordChemical analysiseng
dc.subject.keywordDiseaseseng
dc.subject.keywordElectrophysiologyeng
dc.subject.keywordEnergy dispersive spectroscopyeng
dc.subject.keywordFourier transform infrared spectroscopyeng
dc.subject.keywordFuelseng
dc.subject.keywordOptical emission spectroscopyeng
dc.subject.keywordParticle size analysiseng
dc.subject.keywordParticles (particulate matter)eng
dc.subject.keywordScanning electron microscopyeng
dc.subject.keywordAirborne particulate matterseng
dc.subject.keywordCardio-vascular diseaseeng
dc.subject.keywordChemical compositionseng
dc.subject.keywordEnergy dispersive X ray spectroscopyeng
dc.subject.keywordOptical emission spectrometryeng
dc.subject.keywordParticulate Mattereng
dc.subject.keywordPhysico-chemical characterizationeng
dc.subject.keywordVentricular activityeng
dc.subject.keywordThermogravimetric analysiseng
dc.relation.citationvolume231
dc.relation.citationissue10
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationZapata-Hernandez, C., MATyER, Facultad de Ingeniería, Instituto Tecnológico Metropolitano, Cll. 54 A, Medellín, #30-01, Colombia
dc.affiliationDurango-Giraldo, G., MATyER, Facultad de Ingeniería, Instituto Tecnológico Metropolitano, Cll. 54 A, Medellín, #30-01, Colombia
dc.affiliationTobón, C., MATBIOM, Facultad de Ciencias Básicas, Universidad de Medellín, Cra. 87, Medellín, #30-65, Colombia
dc.affiliationBuitrago-Sierra, R., MATyER, Facultad de Ingeniería, Instituto Tecnológico Metropolitano, Cll. 54 A, Medellín, #30-01, Colombia
dc.relation.referencesAl-Thani, H., Koç, M., Isaifan, R.J., A review on the direct effect of particulate atmospheric pollution on materials and its mitigation for sustainable cities and societies (2018) Environmental Science and Pollution Research, 25, pp. 27839-27857
dc.relation.referencesAnderson, J.O., Thundiyil, J.G., Stolbach, A., Clearing the air: a review of the effects of particulate matter air pollution on human health (2012) Journal of Medical Toxicology, 8, pp. 166-175
dc.relation.referencesAngelovi, M., Tká, Z., Angelovi, M., Particulate emissions and biodiesel: a review (2013) Animal Science and Biotechnology, 46, pp. 192-198
dc.relation.referencesAnil, I., Golcuk, K., Karaca, F., ATR-FTIR spectroscopic study of functional groups in aerosols: the contribution of a Saharan dust transport to urban atmosphere in Istanbul, Turkey (2014) Water, Air, and Soil Pollution, 225, pp. 3-14
dc.relation.referencesAntzelevitch, C., Burashnikov, A., Overview of basic mechanisms of cardiac arrhythmia (2011) Cardiac Electrophysiology Clinics, 3, pp. 23-45
dc.relation.references(2017) Inventario De Emisiones atmosféricas Del Valle De Aburrá, actualización, 2015, pp. 1-48. , https://www.metropol.gov.co/ambiental/calidad-del-aire/Documents/Inventario-de-emisiones/Inventario_FuentesM%C3%B3viles2016.pdf
dc.relation.references(2018) Actualización Inventario de Emisiones Atmosféricas del Valle de Aburrá - Año, 2016, pp. 1-62
dc.relation.referencesArias-Valencia, R., Nolasco Bonmatí, A., Pereyra-Zamora, P., Diseño y análisis comparativo de un inventario de indicadores de mortalidad evitable adaptado a las condiciones sanitarias de Colombia (2010) Revista Panamericana de Salud Pública, 26, pp. 385-397
dc.relation.referencesAtchison, W.D., Effects of toxic environmental contaminants on voltage-gated calcium channel function: From past to present (2003) Journal of Bioenergetics and Biomembranes, 35, pp. 507-532
dc.relation.referencesBabick, F., Mielke, J., Wohlleben, W., How reliably can a material be classified as a nanomaterial? Available particle-sizing techniques at work (2016) Journal of Nanoparticle Research, 18, pp. 1-40
dc.relation.referencesBai, X., Liu, Y., Wang, S., Ultrafine particle libraries for exploring mechanisms of PM2.5-induced toxicity in human cells (2018) Ecotoxicology and Environmental Safety, 157, pp. 380-387
dc.relation.referencesBañeras, J., Ferreira-González, I., Marsal, J.R., Short-term exposure to air pollutants increases the risk of ST elevation myocardial infarction and of infarct-related ventricular arrhythmias and mortality (2018) International Journal of Cardiology, 250, pp. 35-42
dc.relation.referencesBernal, J., Lee, J., Cribbs, L.L., Perez-reyes, E., Full reversal of Pb++ block of L-type Ca++ channels requires treatment with heavy metal antidotes (1997) The Journal of Pharmacology and Experimental Therapeutics, 282, pp. 172-180. , COI: 1:CAS:528:DyaK2sXksFOns7Y%3D
dc.relation.referencesBillet, S., Landkocz, Y., Martin, P.J., Chemical characterization of fine and ultrafine PM, direct and indirect genotoxicity of PM and their organic extracts on pulmonary cells (2018) Journal of Environmental Sciences, 71, pp. 168-178
dc.relation.referencesBluvshtein, N., Mahrer, Y., Sandler, A., Rytwo, G., Evaluating the impact of a limestone quarry on suspended and accumulated dust (2011) Atmospheric Environment, 45, pp. 1732-1739
dc.relation.referencesBozkurt, Z.O., Gaga, E., Taşpınar, F., Atmospheric ambient trace element concentrations of PM10 at urban and sub-urban sites: Source apportionment and health risk estimation (2018) Environmental Monitoring and Assessment, 190, p. 168
dc.relation.referencesCavanagh, J.-A.E., Trought, K., Brown, L., Duggan, S., Exploratory investigation of the chemical characteristics and relative toxicity of ambient air particulates from two New Zealand cities (2009) Science of the Total Environment, 407, pp. 5007-5018
dc.relation.referencesChien, Y., Lu, M., Chai, M., Boreo, F.J., Characterization of biodiesel and biodiesel particulate matter by TG, TG - MS, and FTIR (2009) Energy and Fuels, 23, pp. 202-206. , COI: 1:CAS:528:DC%2BD1cXhsVKmtL7L
dc.relation.referencesChin, M.T., Basic mechanisms for adverse cardiovascular events associated with air pollution (2015) Heart, 101, pp. 253-256
dc.relation.referencesCorrea, S., Arbilla, G., Carbonyl emissions in diesel and biodiesel exhaust (2008) Atmospheric Environment, 42, pp. 769-775
dc.relation.referencesCrilley, L.R., Lucarelli, F., Bloss, W.J., Source apportionment of fi ne and coarse particles at a roadside and urban background site in London during the 2012 summer ClearfLo (2017) Environmental Pollution, 220, pp. 766-778
dc.relation.referencesDallarosa, J.B., Teixeira, E.C., Pires, M., Fachel, J., Study of the profile of polycyclic aromatic hydrocarbons in atmospheric particles (PM10) using multivariate methods (2005) Atmospheric Environment, 39, pp. 6587-6596
dc.relation.referencesDavy, P.K., Ancelet, T., Trompetter, W.J., Composition and source contributions of air particulate matter pollution in a New Zealand suburban town (2012) Atmospheric Pollution Research, 3, pp. 143-147
dc.relation.referencesDe Kok, T.M., Hogervorst, J.G., Briedé, J.J., Genotoxicity and physicochemical characteristics of traffic-related ambient particulate matter (2005) Environmental and Molecular Mutagenesis, 46, pp. 71-80
dc.relation.references(2018) Boletín técnico censo edificaciones (CEED), pp. 1-40. , Bogotá D.C.CO. Sec, Censo
dc.relation.referencesDi Novi, C., The indirect effect of fine particulate matter on health through individuals’ life-style (2013) The Journal of Socio-Economics, 44, pp. 27-36
dc.relation.referencesDickerson, A.S., Benson, A.F., Buckley, B., Chan, E.A.W., Concentrations of individual fine particulate matter components in the USA around July 4th (2016) Air Quality, Atmosphere and Health, 10, pp. 349-358
dc.relation.referencesDutta, S., Chang, K.C., Colatsky, T., Optimization of an in silico cardiac cell model for proarrhythmia risk assessment (2017) Frontiers in Physiology, 8, pp. 1-15
dc.relation.referencesEsposito, F., Memoli, V., Di Natale, G., Quercus ilex L. leaves as filters of air cd, Cr, cu, Ni and Pb (2019) Chemosphere, 218, pp. 340-346
dc.relation.referencesFerreira de Mattos, G., Costa, C., Savio, F., Lead poisoning: acute exposure of the heart to lead ions promotes changes in cardiac function and Cav1.2 ion channels (2017) Biophysical Reviews, 9, pp. 807-825
dc.relation.referencesGauterin, F., Dörnhöfer, J., Foitzik, M.-J., Investigation of ultra fine particulate matter emission of rubber tires (2017) Wear, 394-395, pp. 87-95
dc.relation.referencesGe, S., Liu, Z., Furuta, Y., Peng, W., Characteristics of activated carbon remove sulfur particles against smog (2017) Saudi Journal of Biological Sciences, 24, pp. 1370-1374
dc.relation.referencesGenga, A., Siciliano, T., Siciliano, M., Individual particle SEM-EDS analysis of atmospheric aerosols in rural, urban, and industrial sites of Central Italy (2018) Environmental Monitoring and Assessment, 190, p. 456
dc.relation.referencesGipson, K., Stevens, K., Brown, P., Ballato, J., Infrared spectroscopic characterization of Photoluminescent polymer Nanocomposites (2015) Journal of Spectroscopy, 2015, pp. 1-9
dc.relation.referencesGoldstein, A.O., Gans, S.P., Ripley-mof, C., Use of expired air carbon monoxide testing in clinical tobacco treatment settings (2017) Chest, 153, pp. 554-562
dc.relation.referencesGomez, M., Dawidowski, L., Posada, E., Chemical composition of PM2.5 in three zones of the Aburrá Valley, Medellin, Colombia (2011) Proceedings of the Air and Waste Management Association’s Annual Conference and Exhibition, AWMA, pp. 2534-2545
dc.relation.referencesGonzález, L.T., Longoria-Rodríguez, F.E., Sánchez-Domínguez, M., Seasonal variation and chemical composition of particulate matter: a study by XPS, ICP-AES and sequential microanalysis using Raman with SEM/EDS (2018) Journal of Environmental Sciences, 74, pp. 32-49
dc.relation.referencesHamzah, M., Mkhenfouch, M., Rjeb, A., Surface chemistry changes and microstructure evaluation of low density nanocluster polyethylene under natural weathering: A spectroscopic investigation (2018) Journal of Physics: Conference Series, pp. 1-15
dc.relation.referencesHilpert, M., Mora, B.A., Ni, J., Hydrocarbon release during fuel storage and transfer at gas stations: environmental and health effects (2015) Current Environmental Health Reports, 2, pp. 412-422
dc.relation.referencesHuang, K.L., Liu, S.Y., Chou, C.C.K., The effect of size-segregated ambient particulate matter on Th1/Th2-like immune responses in mice (2017) PLoS One, 12, pp. 1-16
dc.relation.referencesJandacka, D., Durcanska, D., Bujdos, M., The contribution of road traffic to particulate matter and metals in air pollution in the vicinity of an urban road (2017) Transportation Research Part D: Transport and Environment, 50, pp. 397-408
dc.relation.referencesJia, J., Cheng, S., Yao, S., Emission characteristics and chemical components of size-segregated particulate matter in iron and steel industry (2018) Atmospheric Environment, 182, pp. 115-127
dc.relation.referencesKharazmi, A., Faraji, N., Hussin, R.M., Structural, optical, opto-thermal and thermal properties of ZnS–PVA nanofluids synthesized through a radiolytic approach (2015) Beilstein Journal of Nanotechnology, 6, pp. 529-536
dc.relation.referencesKholdebarin, A., Biati, A., Moattar, F., Shariat, S.M., Outdoor PM10 source apportionment in metropolitan cities—A case study (2015) Environmental Monitoring and Assessment, 187, p. 49
dc.relation.referencesKupareva, A., Mäki-Arvela, P., Grénman, H., Chemical characterization of lube oils (2013) Energy and Fuels, 27, pp. 27-34
dc.relation.referencesLi, Q., Zhu, Z., Hu, R., Fine particulate matter (PM2.5): The culprit for chronic lung diseases in China (2018) Chronic Diseases and Translational Medicine, 4, pp. 176-186
dc.relation.referencesLiati, A., Schreiber, D., Dimopoulos, P., Electron microscopic characterization of soot particulate matter emitted by modern direct injection gasoline engines (2016) Combustion and Flame, 166, pp. 307-315
dc.relation.referencesLim, Y.-H., Bae, H.-J., Yi, S., Vascular and cardiac autonomic function and PM2.5 constituents among the elderly: A longitudinal study (2017) Science of the Total Environment, 607-608, pp. 847-854
dc.relation.referencesLópez, R.A., Luis, J., Arango, M., (2017) Informe de calidad de vida de Medellín, 2016, pp. 1-201. , Pregón S.A.S, Medellín
dc.relation.referencesLu, J., Ma, L., Cheng, C., Real time analysis of lead-containing atmospheric particles in Guangzhou during wintertime using single particle aerosol mass spectrometry (2019) Ecotoxicology and Environmental Safety, 168, pp. 53-63
dc.relation.referencesLustbeg, M., Silbergeld, E., Blood Lead levels and mortality (2015) American Medical Association, 162, pp. 2443-2449
dc.relation.referencesMadanhire, I., Mbohwa, C., (2016) Mitigating Environmental Impact of Petroleum Lubricants. In: Mitigating Environmental Impact of Petroleum Lubricants, pp. 1-239
dc.relation.referencesMarchini, T., Magnani, N., Annunzio, V.D., Impaired cardiac mitochondrial function and contractile reserve following an acute exposure to environmental particulate matter (2013) Biochimica et Biophysica Acta, 1830, pp. 2545-2552
dc.relation.referencesMartinelli, N., Olivieri, O., Girelli, D., Air particulate matter and cardiovascular disease: A narrative review (2013) European Journal of Internal Medicine, 24, pp. 295-302
dc.relation.referencesMartinez-Angel, J.D., Movilidad motorizada, impacto ambiental, alternativas y perspectivas futuras: consideraciones para el Área Metropolitana del Valle de Aburrá (2018) Revista Salud Pública, 20, pp. 126-131
dc.relation.referencesMasih, A., Saini, R., Singhvi, R., Taneja, A., Concentrations, sources, and exposure profiles of polycyclic aromatic hydrocarbons (PAHs) in particulate matter (PM10) in the north central part of India (2010) Environmental Monitoring and Assessment, 163, pp. 421-431
dc.relation.referencesMazzoli, A., Favoni, O., Particle size, size distribution and morphological evaluation of airborne dust particles of diverse woods by scanning electron microscopy and image processing program (2012) Powder Technology, 225, pp. 65-71
dc.relation.referencesMenke, A., Muntner, P., Batuman, V., Blood lead below 0.48 umol/L (10 μg/dL) and mortality among US adults (2006) Epidemiology, 114, pp. 1388-1394
dc.relation.referencesMinguillón, M.C., Monfort, E., Escrig, A., Air quality comparison between two European ceramic tile clusters (2013) Atmospheric Environment, 74, pp. 311-319
dc.relation.referencesMirowsky, J., Hickey, C., Horton, L., The effect of particle size, location and season on the toxicity of urban and rural particulate matter (2014) Beilstein Journal of Nanotechnology, 5, pp. 1590-1602
dc.relation.referencesMoreira-Lopez, T.C., Oliveira, R.C., Amato, L.F., Intra-urban biomonitoring: Source apportionment using tree barks to identify air pollution sources (2016) Environment International, 91, pp. 271-275
dc.relation.referencesMüller, K., Spindler, G., Herrmann, H., Assessment of trace metal levels in size-resolved particulate matter in the area of Leipzig (2017) Atmospheric Environment, 176, pp. 60-70
dc.relation.referencesMustafi, N.N., Raine, R.R., James, B., Characterization of exhaust particulates from a dual fuel engine by TGA, XPS, and Raman Techniques (2010) Aerosol Science and Technology, 44, pp. 954-963
dc.relation.referencesObot, C.J., Morandi, M.T., Beebe, T.P., Surface components of airborne particulate matter induce macrophage apoptosis through scavenger receptors (2002) Toxicology and Applied Pharmacology, 184, pp. 98-106
dc.relation.referencesPeng, S., Hajela, R.K., Atchison, W.D., Characteristics of block by Pb2+ of function of human neuronal L-, N-, and R-type Ca2+ channels transiently expressed in human embryonic kidney 293 cells (2002) Molecular Pharmacology, 62, pp. 1418-1430
dc.relation.referencesPerrino, C., Tofful, L., Canepari, S., Chemical characterization of indoor and outdoor fine particulate matter in an occupied apartment in Rome, Italy (2015) Indoor Air, 26, pp. 558-570
dc.relation.referencesPopovicheva, O.B., Kireeva, E.D., Shonija, N.K., FTIR analysis of surface functionalities on particulate matter produced by off-road diesel engines operating on diesel and biofuel (2015) Environmental Science and Pollution Research, 22, pp. 4534-4544
dc.relation.referencesRajput, P., Izhar, S., Gupta, T., Deposition modeling of ambient aerosols in human respiratory system: Health implication of fine particles penetration into pulmonary region (2019) Atmospheric Pollution Research, 10, pp. 334-343
dc.relation.referencesRoper, C., Chubb, L.G., Cambal, L., Characterization of ambient and extracted PM2.5 collected on filters for toxicology applications (2015) Inhalation Toxicology, 27, pp. 673-681
dc.relation.referencesRoy, D., Gautam, S., Singh, P., Carbonaceous species and physicochemical characteristics of PM10 in coal mine fire area — A case study (2015) Air Quality, Atmosphere and Health, 9, pp. 429-437
dc.relation.referencesSantos, J.C.O., Santos, I.M.G., Souza, A.G., Thermal degradation of synthetic lubricating oils: Part III – TG and DSC studies (2017) Petroleum Science and Technology, 35, pp. 540-546
dc.relation.referencesSantos, J.M., Reis, C.N., Jr., Source apportionment of settleable particles in an impacted urban and industrialized region in Brazil (2017) Environmental Science and Pollution Research, 24, pp. 22026-22039
dc.relation.referencesSchauer, J.J., Evaluation of elemental carbon as a marker for diesel particulate matter (2003) Exposure Analysis and Environmental Epidemiology, 13, pp. 443-453
dc.relation.referencesŠkarek, M., Janošek, J., Čupr, P., Evaluation of genotoxic and non-genotoxic effects of organic air pollution using in vitro bioassays (2007) Environment International, 33, pp. 859-866
dc.relation.referencesTen Tusscher, K.H.W.J., Mourad, A., Nash, M.P., Organization of ventricular fibrillation in the human heart: Experiments and models (2009) Experimental Physiology, 94, pp. 553-562
dc.relation.referencesTong, S., von Schirnding, Y.E., Prapamontol, T., Environmental lead exposure: a public health problem of global dimensions (2000) Bulletin of the World Health Organization, 78, pp. 1068-1077. , COI: 1:STN:280:DC%2BD3cvmsFSqtg%3D%3D
dc.relation.referencesTuakuila, J., Lison, D., Mbuyi, F., Elevated blood lead levels and sources of exposure in the population of Kinshasa, the capital of the Democratic Republic of Congo (2013) Journal of Exposure Science & Environmental Epidemiology, 23, pp. 81-87
dc.relation.referencesU.S. EPA, E., (1999) Compendium of methods for determination of inorganic compounds in ambient air, , Cincinnati U.S. Environmental Protection Agency, Washington, DC: EPA/625/R-96/010a
dc.relation.referencesU.S. EPA, E., (2013) Integrated science assessment (ISA) for Lead (final report, Jul 2013), , U.S. Environmental Protection Agency, Washington, DC: EPA/600/R-10/075F
dc.relation.referencesU.S. EPA, E., (2016) Revisions to test methods, performance specifications, and testing regulations for air emission sources, , U.S. Environmental Protection Agency, Washington, DC: 81 FR 59799
dc.relation.references(2018) Health and Environmental Effects of Particulate Matter (PM). U.S. Environmental Protection Agency, , https://www.epa.gov/pm-pollution/health-and-environmental-effects-particulate-matter-pm, Accessed 30 May 2018
dc.relation.referencesVimercati, L., Gatti, M.F., Gagliardi, T., Environmental exposure to arsenic and chromium in an industrial area (2017) Environmental Science and Pollution Research, 24, pp. 11528-11535
dc.relation.referencesWang, M., Kai, K., Sugimoto, N., Enkhmaa, S., Meteorological factors affecting winter particulate air pollution in Ulaanbaatar from 2008 to 2016 (2018) Asian Journal of Atmospheric Environment, 12, pp. 244-254
dc.relation.referencesWani, A.L., Ara, A., Usmani, J.A., Lead toxicity: a review (2015) Interdisciplinary Toxicology, 8, p. 55
dc.relation.references(2018) Lead Poisoning and Health, , https://www.who.int/news-room/fact-sheets/detail/lead-poisoning-and-health.Accessed23Aug2018
dc.relation.references(2019) Ambient Air Pollution - a Major Threat to Health and Climate, , https://www.who.int/airpollution/en/.Accessed24Aug2019
dc.relation.referencesWu, W., Zhang, Y., Effects of particulate matter (PM2.5) and associated acidity on ecosystem functioning: response of leaf litter breakdown (2018) Environmental Science and Pollution Research, 25, pp. 30720-30727
dc.relation.referencesXia, T., Zhu, Y., Mu, L., Pulmonary diseases induced by ambient ultrafine and engineered nanoparticles in twenty-first century (2018) National Science Review, 3, pp. 416-429
dc.relation.referencesXing, Y.F., Xu, Y.H., Shi, M.H., Lian, Y.X., The impact of PM2.5 on the human respiratory system (2016) Journal of Thoracic Disease, 8, pp. 69-74
dc.relation.referencesYang, H., Li, X., Wang, Y., Experimental investigation into the oxidation reactivity and nanostructure of particulate matter from diesel engine fuelled with diesel/polyoxymethylene dimethyl ethers blends (2016) Scientific Reports, 6, pp. 1-10
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem