Mostrar el registro sencillo del ítem

dc.creatorSaldarriaga J.F.
dc.creatorCruz Y.
dc.creatorLópez J.E.
dc.date2020
dc.date.accessioned2021-02-05T14:58:30Z
dc.date.available2021-02-05T14:58:30Z
dc.identifier.issn14726750
dc.identifier.urihttp://hdl.handle.net/11407/5994
dc.descriptionBackground: Canavalia ensiformis is a legume native to Central and South America that has historically been a source of protein. Its main proteins, urease, and lectin have been extensively studied and are examples of bioactive compounds. In this work, the effect of pH and light effects on the growth of C. ensiformis were analyzed. Also, the bioactive compounds such as phenols, carotenoids, chlorophyll a/b, and the growth of callus biomass of C. ensiformis from the effect of different types of light treatments (red, blue and mixture) were evaluated. Likewise, the antioxidative activity of C. ensiformis extracts were studied and related to the production of bioactive compounds. For this, a culture of calluses obtained from seeds were carried out. For the light experiments, polypropylene boxes with red, blue, combination (1/3, 3/1 and 1/1 R-B, respectively) lights and white LED were used as control. In each treatment, three glass containers with 25 ml of MS salts containing 0.25 g of fresh callus were seeded. Results: The results have shown that the pH of the culture medium notably affects the increase in callogenic biomass. It shows that the pH of 5.5 shows better results in the callogenic growth of C. ensiformis with an average increase of 1.3051 g (198.04%), regarding the initial weight. It was found that the pH 5.5 and the 1/3 R-B LED combination had higher production of bioactive compounds and better antioxidant activity. At the same time, the red-light treatment was least effective. Conclusions: It was possible to find the ideal conditions of important growth under conditions of pH and light of C. ensiformis. Likewise, it is evaluated whether the production of compounds of interest, such as phenolic compounds and carotenoids, occurs under these conditions. The highest production of calluses occurs in the 1/3 R-B LED combined light treatment, which showed a significant increase in biomass, followed by B. From this study, it could be demonstrated that C. ensiformis produces compounds such as phenols and carotenoids in vitro culture that are essential for the antioxidant activity of the plant. © 2020 The Author(s).
dc.language.isoeng
dc.publisherBioMed Central Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85090817447&doi=10.1186%2fs12896-020-00642-x&partnerID=40&md5=8cc13c509e1af876e446cd45d3534352
dc.sourceBMC Biotechnology
dc.subjectBioactive compoundsspa
dc.subjectC. ensiformisspa
dc.subjectIn vitro culturespa
dc.subjectLED bluespa
dc.subjectLED redspa
dc.subjectpHspa
dc.titlePreliminary study of the production of metabolites from in vitro cultures of C. ensiformis
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambientalspa
dc.identifier.doi10.1186/s12896-020-00642-x
dc.subject.keywordAntioxidantseng
dc.subject.keywordBiomasseng
dc.subject.keywordLight emitting diodeseng
dc.subject.keywordMetaboliteseng
dc.subject.keywordPhenolseng
dc.subject.keywordPigmentseng
dc.subject.keywordPlants (botany)eng
dc.subject.keywordPolypropyleneseng
dc.subject.keywordProteinseng
dc.subject.keywordAnti oxidative activityeng
dc.subject.keywordAnti-oxidant activitieseng
dc.subject.keywordBioactive compoundseng
dc.subject.keywordCanavalia ensiformiseng
dc.subject.keywordGlass containerseng
dc.subject.keywordLed combinationseng
dc.subject.keywordPhenolic compoundseng
dc.subject.keywordPolypropylene boxeseng
dc.subject.keywordEcologyeng
dc.subject.keywordantioxidanteng
dc.subject.keywordCanavalia ensiformis extracteng
dc.subject.keywordcarotenoideng
dc.subject.keywordchlorophyll aeng
dc.subject.keywordchlorophyll beng
dc.subject.keywordphenol derivativeeng
dc.subject.keywordpolypropyleneeng
dc.subject.keywordsodium chlorideeng
dc.subject.keywordunclassified drugeng
dc.subject.keywordantioxidant activityeng
dc.subject.keywordantioxidant activity capacityeng
dc.subject.keywordArticleeng
dc.subject.keywordbiomasseng
dc.subject.keywordblue lighteng
dc.subject.keywordcalluseng
dc.subject.keywordCanavalia ensiformiseng
dc.subject.keywordconcentration (parameter)eng
dc.subject.keywordcontrolled studyeng
dc.subject.keywordin vitro studyeng
dc.subject.keywordmetaboliteeng
dc.subject.keywordnonhumaneng
dc.subject.keywordpHeng
dc.subject.keywordplant growtheng
dc.subject.keywordplant seedeng
dc.subject.keywordprincipal component analysiseng
dc.subject.keywordred lighteng
dc.relation.citationvolume20
dc.relation.citationissue1
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationSaldarriaga, J.F., Dept. of Civil and Environmental Engineering, Universidad de Los Andes, Carrera 1Este #19A-40, Bogotá, 111711, Colombia
dc.affiliationCruz, Y., Dept. of Civil and Environmental Engineering, Universidad de Los Andes, Carrera 1Este #19A-40, Bogotá, 111711, Colombia
dc.affiliationLópez, J.E., Dept. of Environmental Engineering, Universidad de Medellín, Carrera 87 #30-65, Medellín, 050026, Colombia
dc.relation.referencesCarlini, C.R., Ligabue-Braun, R., Ureases as multifunctional toxic proteins: A review (2016) Toxicon, 110, pp. 90-109. , 1:CAS:528:DC%2BC28XpvF2k 26690979
dc.relation.referencesSá, C.A., Vieira, L.R., Pereira Almeida Filho, L.C., Real-Guerra, R., Lopes, F.C., Souza, T.M., Risk assessment of the antifungal and insecticidal peptide Jaburetox and its parental protein the Jack bean (Canavalia ensiformis) urease (2020) Food Chem Toxicol, 136, p. 110977. , 31759068
dc.relation.referencesSridhar, K.R., Seena, S., Nutritional and antinutritional significance of four unconventional legumes of the genus Canavalia - A comparative study (2006) Food Chemistry, 99 (2), pp. 267-288. , 1:CAS:528:DC%2BD28Xktlensbo%3D
dc.relation.referencesSummer, J.B., The isolation and crystallization of the enzyme urease preliminary paper (1926) J Biol Chem, 69 (2), pp. 435-441
dc.relation.referencesFujiuchi, N., Matoba, N., Matsuda, R., Environment Control to Improve Recombinant Protein Yields in Plants Based on Agrobacterium-Mediated Transient Gene Expression (2016) Front Bioeng Biotechnol, 4. , https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4781840/, [citado 20 de abril de 2020]
dc.relation.referencesDebergh, P.C., Effects of agar brand and concentration on the tissue culture medium (1983) Physiol Plant, 59 (2), pp. 270-276. , 1:CAS:528:DyaL3sXlvFWrsbg%3D
dc.relation.referencesSchenk, N., Hsiao, K.-C., Bornman, C.H., Avoidance of precipitation and carbohydrate breakdown in autoclaved plant tissue culture media (1991) Plant Cell Reports, 10 (3), pp. 115-119. , 1:CAS:528:DyaK3MXmsFWms7o%3D 24221488
dc.relation.referencesTuan, P.A., Thwe, A.A., Kim, Y.B., Kim, J.K., Kim, S.-J., Lee, S., Effects of White, Blue, and Red Light-Emitting Diodes on Carotenoid Biosynthetic Gene Expression Levels and Carotenoid Accumulation in Sprouts of Tartary Buckwheat (Fagopyrum tataricum Gaertn.) (2013) J Agric Food Chem, 61 (50), pp. 12356-12361. , 1:CAS:528:DC%2BC3sXhvVCisL3P 24274859
dc.relation.referencesLobiuc, A., Vasilache, V., Oroian, M., Stoleru, T., Burducea, M., Pintilie, O., Blue and Red LED Illumination Improves Growth and Bioactive Compounds Contents in Acyanic and Cyanic Ocimum basilicum L. Microgreens (2017) Molecules, 22 (12), p. 2111. , 6150032
dc.relation.referencesKapoor, S., Raghuvanshi, R., Bhardwaj, P., Sood, H., Saxena, S., Chaurasia, O.P., Influence of light quality on growth, secondary metabolites production and antioxidant activity in callus culture of Rhodiola imbricata Edgew (2018) J Photochemistry Photobiology B: Biol, 183, pp. 258-265. , 1:CAS:528:DC%2BC1cXptFSls7k%3D
dc.relation.referencesŚwieca, M., Dziki, D., Improvement in sprouted wheat flour functionality: Effect of time, temperature and elicitation (2015) Int J Food Sci Technol, 50 (9), pp. 2135-2142
dc.relation.referencesPasqua, G., Manes, F., Monacelli, B., Natale, L., Anselmi, S., Effects of the culture medium pH and ion uptake in in vitro vegetative organogenesis in thin cell layers of tobacco (2002) Plant Sci, 162 (6), pp. 947-955. , 1:CAS:528:DC%2BD38XksVSnsLo%3D
dc.relation.referencesRaven, J.A., Smith, F.A., Nitrogen assimilation and transport in vascular land plants in relation to intracellular pH regulation (1976) New Phytol, 76 (3), pp. 415-431. , 1:CAS:528:DyaE28XktFOjt7o%3D
dc.relation.referencesLang, B., Kaiser, W.M., Solute content and energy status of roots of barley plants cultivated at different pH on nitrate- or ammonium-nitrogen (1994) New Phytol, 128 (3), pp. 451-459
dc.relation.referencesXiang, J., Zheng, J., Zhou, Z., Suo, H., Zhao, X., Zhou, X., Enhancement of red emission and site analysis in Eu2+ doped new-type structure Ba3CaK(PO4)3 for plant growth white LEDs (2019) Chemical Engineering J, 356, pp. 236-244. , 1:CAS:528:DC%2BC1cXhs12nsb7L
dc.relation.referencesZhou, N., Gao, P., Yang, Y., Zhong, Y., Xia, M., Zhang, Y., Novel orange-red emitting phosphor Sr8ZnY(PO4)7:Sm3+ with enhanced emission based on Mg2+ and Al3+ incorporation for plant growth LED lighting (2019) J Taiwan Institute Chem Engineers, 104, pp. 360-368. , 1:CAS:528:DC%2BC1MXhvFaksrbJ
dc.relation.referencesZhou, Z., Zheng, J., Shi, R., Zhang, N., Chen, J., Zhang, R., Ab Initio Site Occupancy and Far-Red Emission of Mn4+ in Cubic-Phase La(MgTi)1/2O3 for Plant Cultivation (2017) ACS Appl Mater Interfaces, 9 (7), pp. 6177-6185. , 1:CAS:528:DC%2BC2sXhsVaht78%3D 28116896
dc.relation.referencesWright, M., Experts examine plant response to SSL and market potential at horticultural conference (2019) LEDs Magazine, , https://www.ledsmagazine.com/manufacturing-services-testing/standards/article/16695503/experts-examine-plant-response-to-ssl-and-market-potential-at-horticultural-conference-magazine, [citado 5 de febrero de 2020]
dc.relation.referencesCarvalho, R.F., Takaki, M., Azevedo, R.A., Plant pigments: The many faces of light perception (2011) Acta Physiol Plant, 33 (2), pp. 241-248. , 1:CAS:528:DC%2BC3MXltVKmtrg%3D
dc.relation.referencesAbidi, F., Girault, T., Douillet, O., Guillemain, G., Sintes, G., Laffaire, M., Blue light effects on rose photosynthesis and photomorphogenesis (2013) Plant Biol, 15 (1), pp. 67-74. , 1:CAS:528:DC%2BC3sXjt1egt70%3D 22686322
dc.relation.referencesMassa, G.D., Kim, H.-H., Wheeler, R.M., Mitchell, C.A., Plant Productivity in Response to LED Lighting (2008) HortScience, 43 (7), pp. 1951-1956
dc.relation.referencesNhut, D.T., Takamura, T., Watanabe, H., Okamoto, K., Tanaka, M., Responses of strawberry plantlets cultured in vitro under superbright red and blue light-emitting diodes (LEDs) (2003) Plant Cell Tissue Organ Culture, 73 (1), pp. 43-52. , 1:CAS:528:DC%2BD3sXhslOktL4%3D
dc.relation.referencesLi, H., Tang, C., Xu, Z., The effects of different light qualities on rapeseed (Brassica napus L.) plantlet growth and morphogenesis in vitro (2013) Scientia Horticulturae, 150, pp. 117-124
dc.relation.referencesChen, X., Yang, Q., Song, W., Wang, L., Guo, W., Xue, X., Growth and nutritional properties of lettuce affected by different alternating intervals of red and blue LED irradiation (2017) Scientia Horticulturae, 223, pp. 44-52. , 1:CAS:528:DC%2BC2sXos1emt7w%3D
dc.relation.referencesEskins, K., Jiang, C.Z., Shibles, R., Light-quality and irradiance effects on pigments, light-harvesting proteins and Rubisco activity in a chlorophyll- And light- harvesting-deficient soybean mutant (1991) Physiol Plant, 83 (1), pp. 47-53. , 1:CAS:528:DyaK3MXmslKjsbc%3D
dc.relation.referencesLeong, T.-Y., Anderson, J.M., Effect of light quality on the composition and function of thylakoid membranes in Atriplex triangularis (1984) Biochimica et Biophysica Acta (BBA) - Bioenergetics, 766 (3), pp. 533-541. , 1:CAS:528:DyaL2cXlvVyhtbk%3D
dc.relation.referencesSenger, H., Bauer, B., The influence of light quality on adaptation and function of the photosynthetic apparatus (1987) Photochem Photobiol, 45 (S1), pp. 939-946. , 1:CAS:528:DyaL2sXkvFentro%3D
dc.relation.referencesWang, X.Y., Xu, X.M., Cui, J., The importance of blue light for leaf area expansion, development of photosynthetic apparatus, and chloroplast ultrastructure of Cucumis sativus grown under weak light (2015) Photosynthetica, 53 (2), pp. 213-222. , 1:CAS:528:DC%2BC2cXitV2gtLvJ
dc.relation.referencesCosta, B.S., Jungandreas, A., Jakob, T., Weisheit, W., Mittag, M., Wilhelm, C., Blue light is essential for high light acclimation and photoprotection in the diatom Phaeodactylum tricornutum (2013) J Exp Bot Enero de, 64 (2), pp. 483-493
dc.relation.referencesBrown, C.S., Schuerger, A.C., Sager, J.C., Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting (1995) J Am Soc Hortic Sci, 120 (5), pp. 808-813. , 1:STN:280:DC%2BD3MnlvVOjsw%3D%3D 11540133
dc.relation.referencesGoins, G.D., Yorio, N.C., Sanwo, M.M., Brown, C.S., Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting (1997) J Exp Bot, 48 (7), pp. 1407-1413. , 1:CAS:528:DyaK2sXmtVKisbs%3D 11541074
dc.relation.referencesKato, M.C., Hikosaka, K., Hirose, T., Leaf discs floated on water are different from intact leaves in photosynthesis and photoinhibition (2002) Photosynthesis Res, 72 (1), p. 65. , 1:CAS:528:DC%2BD38XkvFejsbo%3D
dc.relation.referencesJirakiattikul, Y., Rithichai, P., Songsri, O., Ruangnoo, S., Itharat, A., In vitro propagation and bioactive compound accumulation in regenerated shoots of Dioscorea birmanica Prain & Burkill (2016) Acta Physiol Plant, 38 (10), p. 249
dc.relation.referencesSaldarriaga, J.F., López, J., Lopera, C., Botero, L.R., Efecto del pH y el peso inicial de implante sembrado en la multiplicación callogénica de Canavalia ensiformis (2014) Avances en Ciencias e Ingeniería, 5 (2), pp. 73-83. , 1:CAS:528:DC%2BC2cXhvFeks7nE
dc.relation.referencesWilliams, R.R., Taji, A.M., Winney, K.A., The effect of Ptilotus plant tissue on pH of in vitro media (1990) Plant Cell Tiss Organ Cult, 22 (3), pp. 153-158
dc.relation.referencesRuenroengklin, N., Zhong, J., Duan, X., Yang, B., Li, J., Jiang, Y., Effects of Various Temperatures and pH Values on the Extraction Yield of Phenolics from Litchi Fruit Pericarp Tissue and the Antioxidant Activity of the Extracted Anthocyanins (2008) Int J Mol Sci, 9 (7), pp. 1333-1341. , 1:CAS:528:DC%2BD1cXhtFKnsrnI 19325806 2635725
dc.relation.referencesIsah, T., Umar, S., Mujib, A., Sharma, M.P., Rajasekharan, P.E., Zafar, N., Secondary metabolism of pharmaceuticals in the plant in vitro cultures: Strategies, approaches, and limitations to achieving higher yield (2018) Plant Cell Tiss Organ Cult, 132 (2), pp. 239-265. , 1:CAS:528:DC%2BC2sXhsl2jtb7F
dc.relation.referencesDussert, S., Verdeil, J.-L., Rival, A., Noirot, M., Buffard-Morel, J., Nutrient uptake and growth of in vitro coconut (Cocos nucifera L.) calluses (1995) Plant Science, 106 (2), pp. 185-193. , 1:CAS:528:DyaK2MXkvVart7s%3D
dc.relation.referencesYatazawa, M., Furuhashi, K., Shimizu, M., Growth of callus tissue from rice-root in virto (1967) Plant Cell Physiol, 8 (3), pp. 363-373. , 1:CAS:528:DyaF2sXltVOmt7o%3D
dc.relation.referencesJayaraman, S., Daud, N.H., Halis, R., Mohamed, R., Effects of plant growth regulators, carbon sources and pH values on callus induction in Aquilaria malaccensis leaf explants and characteristics of the resultant calli (2014) J Forestry Res, 25 (3), pp. 535-540. , 1:CAS:528:DC%2BC2cXhtlWmsL3I
dc.relation.referencesRastogi, R., Sawhney, V.K., The Role of Plant Growth Regulators, Sucrose and pH in the Development of Floral Buds of Tomato (Lycopersicon esculentum Mill.) Cultured in vitro (1987) J Plant Physiol, 128 (3), pp. 285-295. , 1:CAS:528:DyaL2sXkslCns7Y%3D
dc.relation.referencesNagella, P., Murthy, H.N., Establishment of cell suspension cultures of Withania somnifera for the production of withanolide A (2010) Bioresource Technology, 101 (17), pp. 6735-6739. , 1:CAS:528:DC%2BC3cXmt1amtLo%3D 20371175
dc.relation.referencesNaik, P.M., Manohar, S.H., Praveen, N., Murthy, H.N., Effects of sucrose and pH levels on in vitro shoot regeneration from leaf explants of Bacopa monnieri and accumulation of bacoside A in regenerated shoots (2010) Plant Cell Tiss Organ Cult, 100 (2), pp. 235-239
dc.relation.referencesMajerus, F., Pareilleux, A., Production of indole alkaloids by gel-entrapped cells of Catharanthus roseus in a continuous flow reactor (1986) Biotechnol Lett, 8 (12), pp. 863-866. , 1:CAS:528:DyaL2sXhtlKqtLg%3D
dc.relation.referencesKarsai, I., Bedo, Z., Hayes, P.M., Effect of induction medium pH and maltose concentration on in vitro androgenesis of hexaploid winter triticale and wheat (1994) Plant Cell Tiss Organ Cult, 39 (1), pp. 49-53. , 1:CAS:528:DyaK2MXkt1Cju7k%3D
dc.relation.referencesSmith, D.L., Krikorian, A.D., Low external pH replaces 2,4-D in maintaining and multiplying 2,4-D-initiated embryogenic cells of carrot (1990) Physiol Plant, 80 (3), pp. 329-336. , 1:CAS:528:DyaK3MXjvFehtg%3D%3D 11537852
dc.relation.referencesSánchez, F., Honrubia, M., Torres, P., Effects of pH, water stress and temperature on in vitro cultures of ectomycorrhizal fungi from Mediterranean forests (2001) Cryptogamie Mycologie, 22 (4), pp. 243-258
dc.relation.referencesPfündel, E., Baake, E., A quantitative description of fluorescence excitation spectra in intact bean leaves greened under intermittent light (1990) Photosynth Res, 26 (1), pp. 19-28. , 24420406
dc.relation.referencesAhmed, H.A., Yu-Xin, T., Qi-Chang, Y., Optimal control of environmental conditions affecting lettuce plant growth in a controlled environment with artificial lighting: A review (2020) South Afr J Botany, 130, pp. 75-89. , 1:CAS:528:DC%2BC1MXisVGgt73O
dc.relation.referencesCosgrove, D.J., Rapid Suppression of Growth by Blue Light: OCCURRENCE, TIME COURSE, and GENERAL CHARACTERISTICS (1981) Plant Physiol, 67 (3), pp. 584-590. , 1:STN:280:DC%2BC3cnhtlyqsA%3D%3D 16661718 425729
dc.relation.referencesGiliberto, L., Perrotta, G., Pallara, P., Weller, J.L., Fraser, P.D., Bramley, P.M., Manipulation of the Blue Light Photoreceptor Cryptochrome 2 in Tomato Affects Vegetative Development, Flowering Time, and Fruit Antioxidant Content (2005) Plant Physiology, 137 (1), pp. 199-208. , 1:CAS:528:DC%2BD2MXhtFOlsr0%3D 15618424 548851
dc.relation.referencesLi, Q., Kubota, C., Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce (2009) Environ Experimental Botany, 67 (1), pp. 59-64. , 1:CAS:528:DC%2BD1MXhtV2qs7jL
dc.relation.referencesSenger, H., The effect of blue light on plants and microorganisms (1982) Photochem Photobiol, 35 (6), pp. 911-920. , 1:CAS:528:DyaL38XkvVylsLk%3D
dc.relation.referencesHoffmann, A.M., Noga, G., Hunsche, M., Alternating high and low intensity of blue light affects PSII photochemistry and raises the contents of carotenoids and anthocyanins in pepper leaves (2016) Plant Growth Regul, 79 (3), pp. 275-285. , 1:CAS:528:DC%2BC2MXhslGmsbvK
dc.relation.referencesChiappero, J., Del, R.C.L., Sosa Alderete, L.G., Palermo, T.B., Banchio, E., Plant growth promoting rhizobacteria improve the antioxidant status in Mentha piperita grown under drought stress leading to an enhancement of plant growth and total phenolic content (2019) Industrial Crops and Products, 139, p. 111553. , 1:CAS:528:DC%2BC1MXhtlyitrrK
dc.relation.referencesAwika, J.M., Rooney, L.W., Wu, X., Prior, R.L., Cisneros-Zevallos, L., Screening Methods to Measure Antioxidant Activity of Sorghum (Sorghum bicolor) and Sorghum Products (2003) J Agric Food Chem, 51 (23), pp. 6657-6662. , 1:CAS:528:DC%2BD3sXns1GgtLg%3D 14582956
dc.relation.referencesAgati, G., Tattini, M., Multiple functional roles of flavonoids in photoprotection (2010) New Phytol, 186 (4), pp. 786-793. , 1:CAS:528:DC%2BC3cXotVWhtLc%3D
dc.relation.referencesKhalil, N., Fekry, M., Bishr, M., El-Zalabani, S., Salama, O., Foliar spraying of salicylic acid induced accumulation of phenolics, increased radical scavenging activity and modified the composition of the essential oil of water stressed Thymus vulgaris L (2018) Plant Physiol Biochem, 123, pp. 65-74. , 1:CAS:528:DC%2BC2sXhvFGmtLnI 29223848
dc.relation.referencesOh, J., Jo, H., Cho, A.R., Kim, S.-J., Han, J., Antioxidant and antimicrobial activities of various leafy herbal teas (2013) Food Control, 31 (2), pp. 403-409. , 1:CAS:528:DC%2BC3sXhsVyrt7c%3D
dc.relation.referencesRiachi, L.G., De Maria, C.A.B., Peppermint antioxidants revisited (2015) Food Chemistry, 176, pp. 72-81. , 1:CAS:528:DC%2BC2cXitFOntb3P 25624208
dc.relation.referencesCaprioli, G., Maggi, F., Bendif, H., Miara, M.D., Cinque, B., Lizzi, A.R., Thymus lanceolatus ethanolic extract protects human cells from t-BHP induced oxidative damage (2018) Food Funct, 9 (7), pp. 3665-3672. , 1:CAS:528:DC%2BC1cXhtVKrt7nK 29932202
dc.relation.referencesJabri Karoui, I., Msaada, K., Abderrabba, M., Marzouk, B., Bioactive compounds and antioxidant activities of ThymeEnriched refined corn oil (2016) J Agr Sci Tech, 18, pp. 79-91
dc.relation.referencesČanadanović-Brunet, J.M., Djilas, S.M., Ćetković, G.S., Tumbas, V.T., Mandić, A.I., Čanadanović, V.M., Antioxidant activities of different Teucrium montanum L. extracts (2006) Int J Food Sci Technol, 41 (6), pp. 667-673
dc.relation.referencesBuchanan, B.B., Gruissem, W., Jones, R.L., (2002) Editores. Biochemistry & Molecular Biology of Plants. 1st Ed, p. 1408. , Wiley Hoboken
dc.relation.referencesPallardy, S.G., (2007) Physiology of Woody Plants. Edición: 3, p. 464. , Academic Press Amsterdam
dc.relation.referencesMurashige, T., Skoog, F., A revised medium for rapid growth and bio assays with tobacco tissue cultures (1962) Physiol Plant, 15 (3), pp. 473-497. , 1:CAS:528:DyaF3sXksFKm
dc.relation.referencesMisra, P., Toppo, D.D., Gupta, N., Chakrabarty, D., Tuli, R., Effect of antioxidants and associate changes in antioxidant enzymes in controlling browning and necrosis of proliferating shoots of elite {Jatropha} curcas {L} (2010) Biomass Bioenergy, 34 (12), pp. 1861-1869. , 1:CAS:528:DC%2BC3cXhtl2gtbvN
dc.relation.referencesWellburn, A.R., The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution (1994) J Plant Physiol, 144 (3), pp. 307-313. , 1:CAS:528:DyaK2cXmsFShsbY%3D
dc.relation.referencesZapata, K., Cortes, F.B., Rojano, B.A., Polifenoles y Actividad Antioxidante del Fruto de Guayaba Agria (Psidium araca) (2013) Información Tecnológica, 24 (5), pp. 103-112. , 1:CAS:528:DC%2BC2cXlsVKrtr0%3D
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem