Mostrar el registro sencillo del ítem

dc.creatorKoverga A.A.
dc.creatorFlórez E.
dc.creatorDorkis L.
dc.creatorRodriguez J.A.
dc.date2020
dc.date.accessioned2021-02-05T14:58:30Z
dc.date.available2021-02-05T14:58:30Z
dc.identifier.issn14639076
dc.identifier.urihttp://hdl.handle.net/11407/5996
dc.descriptionThe adsorption of H, CO2, HCOO, O and CO on copper monolayers and submonolayers supported on hexagonal WC(0001) surfaces has been investigated. Calculations have been performed using density functional theory with the Perdew-Burke-Ernzerhof exchange correlation functional and D2 van der Waals corrections. In addition, dipole corrections were also included. The catalytic properties of supported Cu on both carbon- and metal-terminated WC(0001) surfaces were explored. On carbon-terminated WC(0001) surfaces, Cu tends to be oxidized, while on the metallic terminated surface, it gains charge. The results indicate that all studied Cu/WC(0001) surfaces bind all adsorbates stronger than the extended Cu(111). For CO, the binding energy is so large in some cases (1.6-2.2 eV) that it could potentially lead to catalyst deactivation. Nevertheless, surfaces with an adsorbed Cu monolayer, CuML, are less prone to this deactivation, since there are not WC surface atoms; and thus, the contribution of strong CO adsorption from the support does not play a role. Energy barriers for HCOO formation, relative to direct dissociation barriers of CO2, indicate that a hydrogen-assisted reduction path is more likely to occur on Cu/WC(0001) materials, with CuML/metallic termination being the most active system for this reaction path. On the other hand, CO2 adsorption on CuML surfaces is slightly weaker on a C-terminated surface than on a metal-terminated surface, although both surfaces have similar dissociation barriers. This fact together with the weaker CO adsorption on CuML/C-terminated WC(0001) than on metal-terminated WC(0001) suggests that the former system may be a better catalyst for CO2 reduction, due to the lower surface poisoning by the CO2 dissociation products. Possible deactivation of Cu/WC(0001) materials may be prevented by the introduction of hydrogen into the system, thus promoting the formation of HCOO and avoiding CO and O formation. © 2020 the Owner Societies.
dc.language.isoeng
dc.publisherRoyal Society of Chemistry
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85087097413&doi=10.1039%2fd0cp00358a&partnerID=40&md5=f9ef8e6b8bf2ab62de90977273bf3151
dc.sourcePhysical Chemistry Chemical Physics
dc.titlePromoting effect of tungsten carbide on the catalytic activity of Cu for CO2reduction
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.identifier.doi10.1039/d0cp00358a
dc.subject.keywordAdsorptioneng
dc.subject.keywordBinding energyeng
dc.subject.keywordCarboneng
dc.subject.keywordCarbon dioxideeng
dc.subject.keywordCatalyst activityeng
dc.subject.keywordCatalyst deactivationeng
dc.subject.keywordCatalyst poisoningeng
dc.subject.keywordCoppereng
dc.subject.keywordDensity functional theoryeng
dc.subject.keywordDissociationeng
dc.subject.keywordMonolayerseng
dc.subject.keywordTungsten carbideeng
dc.subject.keywordVan der Waals forceseng
dc.subject.keywordCatalytic propertieseng
dc.subject.keywordDissociation barriereng
dc.subject.keywordDissociation productseng
dc.subject.keywordPerdew-Burke-Ernzerhof exchange-correlation functionaleng
dc.subject.keywordPromoting effecteng
dc.subject.keywordReaction pathseng
dc.subject.keywordSurface poisoningeng
dc.subject.keywordVan der Waals correctioneng
dc.subject.keywordCopper compoundseng
dc.relation.citationvolume22
dc.relation.citationissue24
dc.relation.citationstartpage13666
dc.relation.citationendpage13679
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationKoverga, A.A., Universidad Nacional de Colombia Sede Medellín, Facultad de Minas, Departamento de Materiales y Minerales, Grupo de Investigación en Catálisis y Nanomateriales, Medellín, Colombia, Universidad de Medellín, Facultad de Ciencias Básicas, Grupo de Investigación Matandmpac, Medellín, Colombia
dc.affiliationFlórez, E., Universidad de Medellín, Facultad de Ciencias Básicas, Grupo de Investigación Matandmpac, Medellín, Colombia
dc.affiliationDorkis, L., Universidad Nacional de Colombia Sede Medellín, Facultad de Minas, Departamento de Materiales y Minerales, Grupo de Investigación en Catálisis y Nanomateriales, Medellín, Colombia
dc.affiliationRodriguez, J.A., Chemistry Department, Brookhaven National Laboratory, Upton, NY, United States
dc.relation.referencesPera-Titus, M., (2014) Chem. Rev., 114, pp. 1413-1492
dc.relation.referencesYang, H., Xu, Z., Fan, M., Gupta, R., Slimane, R.B., Bland, A.E., Wright, I., (2008) J. Environ. Sci., 20, pp. 14-27
dc.relation.referencesMacDowell, N., Florin, N., Buchard, A., Hallett, J., Galindo, A., Jackson, G., Adjiman, C.S., Fennell, P., (2010) Energy Environ. Sci., 3, pp. 1645-1669
dc.relation.referencesDarensbourg, D.J., (2010) Inorg. Chem., 49, pp. 10765-10780
dc.relation.referencesDibenedetto, A., Angelini, A., Stufano, P., (2014) J. Chem. Technol. Biotechnol., 89, pp. 334-353
dc.relation.referencesCorsten, M., Ramírez, A., Shen, L., Koornneef, J., Faaij, A., (2013) Int. J. Greenhouse Gas Control, 13, pp. 59-71
dc.relation.referencesBoix, A.V., Ulla, M.A., Petunchi, J.O., (1996) J. Catal., 162, pp. 239-249
dc.relation.referencesAlayoglu, S., Beaumont, S.K., Zheng, F., Pushkarev, V.V., Zheng, H., Iablokov, V., Liu, Z., Somorjai, G.A., (2011) Top. Catal., 54, pp. 778-785
dc.relation.referencesHori, Y., Kikuchi, K., Suzuki, S., (1985) Chem. Lett., pp. 1695-1698
dc.relation.referencesHori, Y., Takahashi, R., Yoshinami, Y., Murata, A., (1997) J. Phys. Chem. B, 101, pp. 7075-7081
dc.relation.referencesSagar, G.V., Rao, P.V.R., Srikanth, C.S., Chary, K.V.R., (2006) J. Phys. Chem. B, 110, pp. 13881-13888
dc.relation.referencesVan Den Berg, R., Zečević, J., Sehested, J., Helveg, S., De Jongh, P.E., De Jong, K.P., (2016) Catal. Today, 272, pp. 87-93
dc.relation.referencesPosada-Pérez, S., Ramírez, P.J., Evans, J., Viñes, F., Liu, P., Illas, F., Rodriguez, J.A., (2016) J. Am. Chem. Soc., 138, pp. 8269-8278
dc.relation.referencesRodriguez, J.A., Evans, J., Feria, L., Vidal, A.B., Liu, P., Nakamura, K., Illas, F., (2013) J. Catal., 307, pp. 162-169
dc.relation.referencesVidal, A.B., Feria, L., Evans, J., Takahashi, Y., Liu, P., Nakamura, K., Illas, F., Rodriguez, J.A., (2012) J. Phys. Chem. Lett., 3, pp. 2275-2280
dc.relation.referencesLevy, R.B., Boudart, M., (1973) Science, 181, pp. 547-549
dc.relation.referencesPatterson, P.M., Das, T.K., Davis, B.H., (2003) Appl. Catal., A, 251, pp. 449-455
dc.relation.referencesLiu, P., Rodriguez, J.A., (2006) J. Phys. Chem. B, 110, pp. 19418-19425
dc.relation.referencesSchweitzer, N.M., Schaidle, J.A., Ezekoye, O.K., Pan, X., Linic, S., Thompson, L.T., (2011) J. Am. Chem. Soc., 133, pp. 2378-2381
dc.relation.referencesPorosoff, M.D., Yang, X., Boscoboinik, J.A., Chen, J.G., (2014) Angew. Chem., Int. Ed., 53, pp. 6705-6709
dc.relation.referencesOno, L.K., Sudfeld, D., Roldan Cuenya, B., (2006) Surf. Sci., 600, pp. 5041-5050
dc.relation.referencesQi, K.Z., Wang, G.C., Zheng, W.J., (2013) Surf. Sci., 614, pp. 53-63
dc.relation.referencesKunkel, C., Viñes, F., Illas, F., (2016) Energy Environ. Sci., 9, pp. 141-144
dc.relation.referencesPosada-Pérez, S., Viñes, F., Ramirez, P.J., Vidal, A.B., Rodriguez, J.A., Illas, F., (2014) Phys. Chem. Chem. Phys., 16, pp. 14912-14921
dc.relation.referencesLi, N., Chen, X., Ong, W.J., MacFarlane, D.R., Zhao, X., Cheetham, A.K., Sun, C., (2017) Acs Nano, 11, pp. 10825-10833
dc.relation.referencesLeitner, W., (1995) Angew. Chem., Int. Ed. Engl., 34, pp. 2207-2221
dc.relation.referencesGrabow, L.C., Mavrikakis, M., (2011) Acs Catal., 1, pp. 365-384
dc.relation.referencesChoudhury, J., (2012) ChemCatChem, 4, pp. 609-611
dc.relation.referencesLi, Y.N., Ma, R., He, L.N., Diao, Z.F., (2014) Catal. Sci. Technol., 4, pp. 1498-1512
dc.relation.referencesPosada-Pérez, S., Viñes, F., Rodriguez, J.A., Illas, F., (2015) Top. Catal., 58, pp. 159-173
dc.relation.referencesPosada-Pérez, S., Ramírez, P.J., Gutiérrez, R.A., Stacchiola, D.J., Viñes, F., Liu, P., Illas, F., Rodriguez, J.A., (2016) Catal. Sci. Technol., 6, pp. 6766-6777
dc.relation.referencesKoverga, A.A., Flórez, E., Dorkis, L., Rodriguez, J.A., (2019) J. Phys. Chem. C, 123, pp. 8871-8883
dc.relation.referencesDubois, J.-L., Sayama, K., Arakawa, H., (1992) Chem. Lett., pp. 5-8
dc.relation.referencesWannakao, S., Artrith, N., Limtrakul, J., Kolpak, A.M., (2015) ChemSusChem, 8, pp. 2745-2751
dc.relation.referencesWannakao, S., Artrith, N., Limtrakul, J., Kolpak, A.M., (2017) J. Phys. Chem. C, 121, pp. 20306-20314
dc.relation.referencesYang, Y., Evans, J., Rodriguez, J.A., White, M.G., Liu, P., (2010) Phys. Chem. Chem. Phys., 12, pp. 9909-9917
dc.relation.referencesRasmussen, P.B., Holmblad, P.M., Askgaard, T., Ovesen, C.V., Stolze, P., Norskov, N.K., Chorkendorff, I., (1994) Catal. Lett., 26, p. 373
dc.relation.referencesTaylor, P.A., Rasmussen, P.B., Ovesen, C.V., Chorkendorff, I., (1992) Surf. Sci., 261, p. 191
dc.relation.referencesWang, G.C., Jiang, L., Morikawa, Y., Nakamura, J., Cai, Z.S., Pan, Y.M., Zhao, X.Z., (2004) Surf. Sci., 570, pp. 205-217
dc.relation.referencesLiu, X., Sun, L., Deng, W.-Q., (2018) J. Phys. Chem. C, 122, pp. 8306-8314
dc.relation.referencesFreund, H.J., Roberts, M.W., (1996) Surf. Sci. Rep., 25, pp. 225-273
dc.relation.referencesVasić Anićijević, D.D., Nikolić, V.M., Marčeta-Kaninski, M.P., Pašti, I.A., (2013) Int. J. Hydrogen Energy, 38, pp. 16071-16079
dc.relation.referencesPosada-Pérez, S., Viñes, F., Rodríguez, J.A., Illas, F., (2015) J. Chem. Phys., 143, p. 114704
dc.relation.referencesKresse, G., Hafner, J., (1993) Phys. Rev. B: Condens. Matter Mater. Phys., 47, pp. 558-561
dc.relation.referencesKresse, G., Hafner, J., (1994) Phys. Rev. B: Condens. Matter Mater. Phys., 49, pp. 14251-14269
dc.relation.referencesKresse, G., Furthmüller, J., (1996) Phys. Rev. B: Condens. Matter Mater. Phys., 54, pp. 11169-11186
dc.relation.referencesKresse, G., Furthmüller, J., (1996) Comput. Mater. Sci., 6, pp. 15-50
dc.relation.referencesBlöchl, P.E., (1994) Phys. Rev. B: Condens. Matter Mater. Phys., 50, pp. 17953-17979
dc.relation.referencesJoubert, D., (1999) Phys. Rev. B: Condens. Matter Mater. Phys., 59, pp. 1758-1775
dc.relation.referencesPerdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett., 77, pp. 3865-3868
dc.relation.referencesGrimme, S., (2004) J. Comput. Chem., 25, pp. 1463-1473
dc.relation.referencesMonkhorst, H.J., Pack, J.D., (1976) Phys. Rev. B: Solid State, 13, pp. 5188-5192
dc.relation.referencesMethfessel, M., Paxton, A.T., (1989) Phys. Rev. B: Condens. Matter Mater. Phys., 40, pp. 3616-3621
dc.relation.referencesBader, R.F.W., (1990) Atoms in Molecules: A Quantum Theory, , Oxford University Press, Oxford, UK
dc.relation.referencesHenkelman, G., Arnaldsson, A., Jónsson, H., (2006) Comput. Mater. Sci., 36, pp. 354-360
dc.relation.referencesKoverga, A.A., Frank, S., Koper, M.T.M., (2013) Electrochim. Acta, 101, pp. 244-253
dc.relation.referencesMomma, K., Izumi, F., (2011) J. Appl. Crystallogr., 44, pp. 1272-1276
dc.relation.referencesHumphrey, W., Dalke, A., Schulten, K., (1996) J. Mol. Graphics, 14, pp. 33-38
dc.relation.referencesHenkelman, G., Uberuaga, B.P., Jónsson, H., (2000) J. Chem. Phys., 113, pp. 9901-9904
dc.relation.referencesHenkelman, G., Jónsson, H., (2000) J. Chem. Phys., 113, pp. 9978-9985
dc.relation.referencesHammer, B., Nørskov, J.K., Electronic Factors Determining the Reactivity of Metal Surfaces (1995) Surf. Sci., 343, pp. 211-220
dc.relation.referencesHammer, B., Nørskov, J.K., Why Gold is the Noblest of All the Metals (1995) Nature, 376, pp. 238-240
dc.relation.referencesOu, L., (2015) Rsc Adv., 5, pp. 57361-57371
dc.relation.referencesTorres, D., Neyman, K.M., Illas, F., (2006) Chem. Phys. Lett., 429, pp. 86-90
dc.relation.referencesXu, L., Lin, J., Bai, Y., Mavrikakis, M., (2018) Top. Catal., 61, pp. 736-750
dc.relation.referencesHao, X., Zhang, R., He, L., Huang, Z., Wang, B., (2018) Mol. Catal., 445, pp. 152-162
dc.relation.referencesTong, Y.J., Wu, S.Y., Chen, H.T., (2018) Appl. Surf. Sci., 428, pp. 579-585
dc.relation.referencesGajdoš, M., Eichler, A., Hafner, J., (2004) J. Phys.: Condens. Matter, 16, pp. 1141-1164
dc.relation.referencesYudanov, I.V., Genest, A., Schauermann, S., Freund, H.J., Rösch, N., (2012) Nano Lett., 12, pp. 2134-2139
dc.relation.referencesNeef, M., Doll, K., (2006) Surf. Sci., 600, pp. 1085-1092
dc.relation.referencesFerrin, P., Kandoi, S., Nilekar, A.U., Mavrikakis, M., (2012) Surf. Sci., 606 (78), pp. 679-689
dc.relation.referencesLuo, M., Hu, G., Lee, M., (2007) Surf. Sci., 601 (6), pp. 1461-1466
dc.relation.referencesPadama, A.A.B., Ocon, J.D., Nakanishi, H., Kasai, H., (2019) J. Phys.: Condens. Matter, 31, p. 415201
dc.relation.referencesOu, L., Chen, Y., Jin, J., (2016) Rsc Adv., 6, pp. 67866-67874
dc.relation.referencesYuan, D., Liao, H., Hu, W., (2019) Phys. Chem. Chem. Phys., 21, pp. 21049-21056
dc.relation.referencesKlaja, O., Szczygieł, J., Trawczyński, J., Szyja, B.M., (2017) Theor. Chem. Acc., 136, p. 98
dc.relation.referencesMuttaqien, F., Hamamoto, Y., Inagaki, K., Morikawa, Y., (2014) J. Chem. Phys., 141, p. 034702
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem