Mostrar el registro sencillo del ítem

dc.creatorGómez-Echavarría A.
dc.creatorUgarte J.P.
dc.creatorTobón C.
dc.date2020
dc.date.accessioned2021-02-05T14:58:32Z
dc.date.available2021-02-05T14:58:32Z
dc.identifier.isbn9783030618339
dc.identifier.issn18650929
dc.identifier.urihttp://hdl.handle.net/11407/5999
dc.descriptionA fractional Fourier transform-based strategy is proposed for the analysis of morphological irregularities of 933 simulated electrograms recorded from a 3D simulated human atria under atrial fibrillation. Optimum fractional domains are considered to quantify the non-stationary features in the signals after preprocessing and segmentation. Optimum order maps obtained with the proposed strategy are compared with approximate entropy maps generated in previous studies. The results indicate that distinct types of electrical activity can be associated with different fractional domains and that the FrFT can be sensitive to different underlying propagation patterns where the approximate entropy exhibits uniform behavior. © 2020, Springer Nature Switzerland AG.
dc.language.isoeng
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85094123744&doi=10.1007%2f978-3-030-61834-6_21&partnerID=40&md5=5408d11b7328c90e1c98521ae512073e
dc.sourceCommunications in Computer and Information Science
dc.subjectAtrial electrogramsspa
dc.subjectAtrial Fibrillationspa
dc.subjectFractional Fourier Transformspa
dc.subjectIrregular morphology signalspa
dc.titleQuantifying Irregular Morphology Electrograms in Atrial Fibrillation Using Fractional Fourier Domains
dc.typeConference Papereng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.identifier.doi10.1007/978-3-030-61834-6_21
dc.subject.keywordEntropyeng
dc.subject.keywordMorphologyeng
dc.subject.keywordApproximate entropyeng
dc.subject.keywordAtrial fibrillationeng
dc.subject.keywordElectrical activitieseng
dc.subject.keywordFractional Fourier domainseng
dc.subject.keywordFractional Fourier transformseng
dc.subject.keywordIrregular morphologyeng
dc.subject.keywordNonstationaryeng
dc.subject.keywordPropagation patterneng
dc.subject.keywordDiseaseseng
dc.relation.citationvolume1274 CCIS
dc.relation.citationstartpage245
dc.relation.citationendpage256
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationGómez-Echavarría, A., MATBIOM, Universidad de Medellín, Medellín, Colombia
dc.affiliationUgarte, J.P., GIMSC, Universidad de San Buenaventura, Medellín, Colombia
dc.affiliationTobón, C., MATBIOM, Universidad de Medellín, Medellín, Colombia
dc.relation.referencesAcharya, U.R., Application of nonlinear methods to discriminate frac-tionated electrograms in paroxysmal versus persistent atrial fibrillation (2019) Comput. Meth. Prog. Bio., 175, pp. 163-178
dc.relation.referencesAlmeida, L.B., The fractional Fourier transform and time-frequency representations (1994) IEEE Trans. Signal Process., 42 (11), pp. 3084-3091
dc.relation.referencesBotteron, G., Smith, J., A technique for measurement of the extent of spatial organization of atrial activation during atrial fibrillation in the intact human heart (1995) IEEE Trans. Biomed. Eng., 42 (6), pp. 579-586
dc.relation.referencesChen, L.Y., Benditt, D.G., Alonso, A., Atrial fibrillation and its association with sudden cardiac death (2014) Circ. J. Official J. Japanese Circ. Soc., 78 (11), pp. 2588-2593
dc.relation.referencesCirugeda-Roldán, E.M., Molina Picó, A., Novák, D., Cuesta-Frau, D., Kremen, V., Sample entropy analysis of noisy atrial electrograms during atrial fibrillation (2018) Comput. Math. Methods Med., 2018
dc.relation.referencesClayton, R.H., Nash, M.P., Analysis of cardiac fibrillation using phase mapping (2015) Card. Electrophysiol. Clin., 7 (1), pp. 49-58
dc.relation.referencesEverett, T.H., IV., Wilson, E.E., Verheule, S., Guerra, J.M., Foreman, S., Olgin, J.E., Structural atrial remodeling alters the substrate and spatiotemporal organization of atrial fibrillation: A comparison in canine models of structural and electrical atrial remodeling (2006) Am. J. Physiol. Heart Circ. Physiol., 291 (6)
dc.relation.referencesGomez, A., Ugarte, J.P., Tobón, C., The fractional Fourier transform as a biomedical signal and image processing tool: A review (2020) Biocybern. Biomed. Eng.
dc.relation.referencesJacquemet, V., Study of unipolar electrogram morphology in a computer model of atrial fibrillation (2003) J. Cardiovasc. Electrophysiol., 14 (10), pp. 172-179. , suppl
dc.relation.referencesKampstra, P., Beanplot: A boxplot alternative for visual comparison of distributions (2008) J. Stat. Softw. Code Snippets, 28 (1), pp. 1-9
dc.relation.referencesLin, Y.J., Tai, C.T., Chen, S.A., Can mapping and ablation of atrial fibrillation be guided by frequency analysis of fibrillatory waves? (2006) J. Cardiovasc. Electrophysiol., 17, pp. 44-49
dc.relation.referencesMansour, M., Mandapati, R., Berenfeld, O., Chen, J., Samie, F.H., Jalife, J., Left-to-right gradient of atrial frequencies during acute atrial fibrillation in the isolated sheep heart (2001) Circulation, 103 (21), pp. 2631-2636
dc.relation.referencesMiyasaka, Y., Mortality trends in patients diagnosed with first atrial fibrillation. A 21-year community-based study (2007) J. Am. College Cardiol., 49 (9), pp. 986-992
dc.relation.referencesNg, J., Kadish, A.H., Goldberger, J.J., Effect of electrogram characteristics on the relationship of dominant frequency to atrial activation rate in atrial fibrillation (2006) Heart Rhythm, 3 (11), pp. 1295-1305
dc.relation.referencesNygren, A., Mathematical model of an adult human atrial cell: The role of K+ currents in repolarization (1998) Circ. Res., 82 (1), pp. 63-81
dc.relation.referencesOzaktas, H.M., Ankan, O., Kutay, M.A., Bozdagt, G., Digital computation of the fractional Fourier transform (1996) IEEE Trans. Signal Process., 44 (9), pp. 2141-2150
dc.relation.referencesOzaktas, H.M., Kutay, M.A., Mendlovic, D., Introduction to the fractional Fourier transform and its applications (1999) Adv. Imag. Electron Phys., 106, pp. 239-291
dc.relation.referencesPincus, S.M., Approximate entropy (ApEn) as a regularity measure (1998) Applications of Nonlinear Dynamics to Developmental Process Modeling, pp. 243-268
dc.relation.referencesSanders, P., Frequency mapping of the pulmonary veins in paroxysmal versus permanent atrial fibrillation (2006) J. Cardiovasc. Electrophysiol., 17 (9), pp. 965-972
dc.relation.referencesSkanes, A.C., Mandapati, R., Berenfeld, O., Davidenko, J.M., Jalife, J., Spatiotemporal periodicity during atrial fibrillation in the isolated sheep heart (1998) Circulation, 98 (12), pp. 1236-1248
dc.relation.referencesTan, A.Y., Li, H., Wachsmann-Hogiu, S., Chen, L.S., Chen, P.S., Fishbein, M.C., Autonomic innervation and segmental muscular disconnections at the human pulmonary vein-atrial junction (2006) Implications for Catheter Ablation of Atrial-Pulmonary Vein Junction. J. Am. College Cardiol., 48 (1), pp. 132-143
dc.relation.referencesTobón, C., Ruiz-Villa, C.A., Heidenreich, E., Romero, L., Hornero, F., Saiz, J., A three-dimensional human atrial model with fiber orientation. Electrograms and arrhythmic activation patterns relationship (2013) Plos ONE, 8 (2)
dc.relation.referencesUgarte, J.P., Dynamic approximate entropy electroanatomic maps detect rotors in a simulated atrial fibrillation model (2014) Plos ONE, 9 (12), pp. 1-19
dc.relation.referencesUgarte, J.P., Tobón, C., Orozco-Duque, A., Entropy mapping approach for functional reentry detection in atrial fibrillation: An in-silico study Juan (2019) Entropy, 21 (2), pp. 1-17. , https://doi.org/10.3390/e21020194
dc.relation.referencesZhang, Y., Zhang, Q., Wu, S., Biomedical signal detection based on fractional fourier transform (2008) 5Th International Conference on Information Technology and Applications in Biomedicine, ITAB 2008 in Conjunction with 2Nd International Symposium and Summer School on Biomedical and Health Engineering, IS3BHE 2008, Shenzhen, China, pp. 349-352
dc.relation.referencesZhang, Y.D., A comprehensive survey on fractional Fourier transform (2017) Fun-Damenta Informaticae, 151 (1-4), pp. 1-48
dc.relation.referencesZheng, L., Shi, D., Maximum amplitude method for estimating compact fractional Fourier domain (2010) IEEE Signal Process. Lett., 17 (3), pp. 293-296
dc.relation.referencesZlochiver, S., Yamazaki, M., Kalifa, J., Berenfeld, O., Rotor meandering contributes to irregularity in electrograms during atrial fibrillation (2008) Heart Rhythm, 5 (6), pp. 846-854
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/other


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem