Mostrar el registro sencillo del ítem
Remote photoplethysmography (rPPG) for contactless heart rate monitoring using a single monochrome and color camera
dc.creator | Ma X. | |
dc.creator | Tobón D.P. | |
dc.creator | El Saddik A. | |
dc.date | 2020 | |
dc.date.accessioned | 2021-02-05T14:58:38Z | |
dc.date.available | 2021-02-05T14:58:38Z | |
dc.identifier.isbn | 9783030544065 | |
dc.identifier.issn | 3029743 | |
dc.identifier.uri | http://hdl.handle.net/11407/6002 | |
dc.description | Human vital signs are essential information that are closely related to both physical cardiac assessments and psychological emotion studies. One of the most important data is the heart rate, which is closely connected to the clinical state of the human body. Modern image processing technologies, such as Remote Photoplethysmography (rPPG), have enabled us to collect and extract the heart rate data from the body by just using an optical sensor and not making any physical contact. In this paper, we propose a real-time camera-based heart rate detector system using computer vision and signal processing techniques. The software of the system is designed to be compatible with both an ordinary built-in color webcam and an industry grade grayscale camera. In addition, we conduct an analysis based on the experimental results collected from a combination of test subjects varying in genders, races, and ages, followed by a quick performance comparison between the color webcam and an industry grayscale camera. The final calculations on percentage error have shown interesting results as the built-in color webcam with the digital spatial filter and the grayscale camera with optical filter achieved relatively similar accuracy under both still and exercising conditions. However, the correlation calculations, on the other hand, have shown that compared to the webcam, the industry grade camera is superior in stability when facial artifacts are presented. © Springer Nature Switzerland AG 2020. | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089607797&doi=10.1007%2f978-3-030-54407-2_21&partnerID=40&md5=4f1f34c3e631234336026c892fcea238 | |
dc.source | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | |
dc.subject | Computer vision | spa |
dc.subject | Heart rate | spa |
dc.subject | Photoplethysmography | spa |
dc.subject | rPPG | spa |
dc.subject | Signal processing | spa |
dc.title | Remote photoplethysmography (rPPG) for contactless heart rate monitoring using a single monochrome and color camera | |
dc.type | Conference Paper | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Ingeniería de Sistemas | spa |
dc.identifier.doi | 10.1007/978-3-030-54407-2_21 | |
dc.subject.keyword | Cameras | eng |
dc.subject.keyword | Color | eng |
dc.subject.keyword | Image processing | eng |
dc.subject.keyword | Optical data processing | eng |
dc.subject.keyword | Patient monitoring | eng |
dc.subject.keyword | Photoplethysmography | eng |
dc.subject.keyword | Heart rate detectors | eng |
dc.subject.keyword | Heart-rate monitoring | eng |
dc.subject.keyword | Image processing technology | eng |
dc.subject.keyword | Percentage error | eng |
dc.subject.keyword | Performance comparison | eng |
dc.subject.keyword | Physical contacts | eng |
dc.subject.keyword | Signal processing technique | eng |
dc.subject.keyword | Spatial filters | eng |
dc.subject.keyword | Heart | eng |
dc.relation.citationvolume | 12015 LNCS | |
dc.relation.citationstartpage | 248 | |
dc.relation.citationendpage | 262 | |
dc.publisher.faculty | Facultad de Ingenierías | spa |
dc.affiliation | Ma, X., Multimedia Communications Research Laboratory, University of Ottawa, Ottawa, Canada | |
dc.affiliation | Tobón, D.P., Universidad de Medellin, Medellin, Colombia | |
dc.affiliation | El Saddik, A., Multimedia Communications Research Laboratory, University of Ottawa, Ottawa, Canada | |
dc.relation.references | Monfredi, O., Biophysical characterization of the underappreciated and important relationship between heart rate variability and heart rate (2014) Hypertension, 64 (6), pp. 1334-1343 | |
dc.relation.references | Wang, C., Pun, T., Chanel, G., A comparative survey of methods for remote heart rate detection from frontal face videos (2018) Front. Bioeng. Biotechnol, 6, p. 33 | |
dc.relation.references | Verkruysse, W., Svaasand, L.O., Nelson, J.S., Remote plethysmographic imaging using ambient light (2008) Opt. Express, 16 (26), p. 21434 | |
dc.relation.references | He, D.D., Winokur, E.S., Sodini, C.G., A continuous, wearable, and wireless heart monitor using head ballistocardiogram (BCG) and head electrocardiogram (ECG) (2011) 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society | |
dc.relation.references | Freitas, U.S., (2014) eTELEMED, , Remote Camera-Based Pulse Oximetry | |
dc.relation.references | Kwon, S., Kim, H., Park, K.S., Validation of heart rate extraction using video imaging on a built-in camera system of a smartphone (2012) 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society | |
dc.relation.references | Po, L.-M., Feng, L., Li, Y., Xu, X., Cheung, T.C.-H., Cheung, K.-W., Block-based adaptive ROI for remote photoplethysmography (2017) Multimedia Tools Appl, 77 (6), pp. 6503-6529. , https://doi.org/10.1007/s11042-017-4563-7 | |
dc.relation.references | Rahman, H., Ahmed, M., Begum, S., Funk, P., Real time heart rate monitoring from facial RGB color video using webcam (2016) The 29th Annual Workshop of the Swedish Artificial Intelligence Society (SAIS) | |
dc.relation.references | Fan, Q., Li, K., Non-contact remote estimation of cardiovascular parameters (2018) Biomed. Signal Process. Control, 40, pp. 192-203 | |
dc.relation.references | Demirezen, H., Erdem, C.E., Remote photoplethysmography using nonlinear mode decomposition (2018) 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) | |
dc.relation.references | Sanyal, S., Nundy, K.K., Algorithms for monitoring heart rate and respiratory rate from the video of a user’s face (2018) IEEE J. Transl. Eng. Health Med, 6, pp. 1-11 | |
dc.relation.references | Monkaresi, H., Calvo, R.A., Yan, H., A machine learning approach to improve contactless heart rate monitoring using a webcam (2014) IEEE J. Biomed. Health Inform, 18 (4), pp. 1153-1160 | |
dc.relation.references | Qiu, Y., Liu, Y., Arteaga-Falconi, J., Dong, H., Saddik, A.E., EVM-CNN: real-time contactless heart rate estimation from facial video (2019) IEEE Trans. Multimedia, 21 (7), pp. 1778-1787 | |
dc.relation.references | Tang, C., Lu, J., Liu, J., Non-contact heart rate monitoring by combining convolutional neural network skin detection and remote photoplethysmography via a low-cost camera (2018) 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) | |
dc.relation.references | Niu, X., Robust remote heart rate estimation from face utilizing spatial-temporal attention (2019) 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019) | |
dc.relation.references | Wu, B.-F., Chu, Y.-W., Huang, P.-W., Chung, M.-L., Neural network based luminance variation resistant remote-photoplethysmography for driver’s heart rate monitoring (2019) IEEE Access, 7, pp. 57210-57225 | |
dc.relation.references | Chen, D.-Y., Image sensor-based heart rate evaluation from face reflectance using Hilbert-Huang transform (2015) IEEE Sens. J, 15 (1), pp. 618-627 | |
dc.relation.references | Kaehler, A., Bradski, G.R., (2017) O’Reilly Media, Sebastopol, , Learning OpenCV 3: Computer Vision in C with the OpenCV Library | |
dc.relation.references | Ucar, M., Hsieh, S.-J., Board 137: MAKER: facial feature detection library for teaching algorithm basics in Python. In: 2018 ASEE Annual Conference & Exposition, Salt Lake City, Utah, June 2018 https://peer.asee.org/29934Internet, ASEE Conferences (2018). Accessed 31 Jul 2019 | |
dc.relation.references | Wu, H.-Y., Rubinstein, M., Shih, E., Guttag, J.V., Durand, F., Freeman, W.T., Eulerian video magnification for revealing subtle changes in the world (2012) ACM Trans. Graph, 31 (4), pp. 1-8 | |
dc.relation.references | Cai, J., Wang, X., Jiang, X., Gao, S., Peng, J., Research on low-quality finger vein image recognition algorithm (2019) 2019 International Conference on SmartMultime-dia | |
dc.relation.references | West, C., Soltaninejad, S., Cheng, I., Assessing the capability of deep-learning models in Parkinson’s disease diagnosis (2019) 2019 International Conference on Smart-Multimedia | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/other |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Indexados Scopus [1893]