Show simple item record

dc.creatorSalman Durmuslar A.
dc.creatorMora-Ramos M.E.
dc.creatorUngan F.
dc.descriptionThe effects of in-growth applied electric fields and in-plane (x-oriented) magnetic fields on the nonlinear optical rectification (NOR), second harmonic generation (SHG) and third harmonic generation (THG) of n-type asymmetric double δ-doped GaAs quantum well are theoretically investigated. One-dimensional Schrödinger equation is solved by considering effective mass and parabolic band approximations to obtain subband energy levels and their related wave functions. The variations in the NOR, SHG and THG coefficients are determined by using the iterative solutions of the compact density matrix approach. Obtained results indicate that the applied electric field leads to optical red-shift on NOR, SHG and THG coefficients while the magnetic field causes optical blue-shift on that coefficients. Hence we can conclude that applied electromagnetic fields can be used to tune optical properties of devices working within the region of infrared electromagnetic spectrum. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.
dc.sourceOptical and Quantum Electronics
dc.subjectElectric fieldspa
dc.subjectMagnetic fieldspa
dc.subjectNonlinear optical responsespa
dc.subjectδ-Doped double quantum wellspa
dc.titleRole of external fields on the nonlinear optical properties of a n-type asymmetric δ -doped double quantum well
dc.subject.keywordBlue shifteng
dc.subject.keywordDelta wing aircrafteng
dc.subject.keywordElectric fieldseng
dc.subject.keywordElectric rectifierseng
dc.subject.keywordElectromagnetic fieldseng
dc.subject.keywordGallium arsenideeng
dc.subject.keywordIII-V semiconductorseng
dc.subject.keywordMagnetic fieldseng
dc.subject.keywordNonlinear opticseng
dc.subject.keywordRed Shifteng
dc.subject.keywordSemiconductor quantum wellseng
dc.subject.keywordWave functionseng
dc.subject.keywordCompact-density-matrix approacheng
dc.subject.keywordDouble quantum welleng
dc.subject.keywordElectromagnetic spectraeng
dc.subject.keywordGaAs quantum wellseng
dc.subject.keywordIterative solutionseng
dc.subject.keywordNon-linear optical propertieseng
dc.subject.keywordNonlinear optical rectificationeng
dc.subject.keywordSubband energieseng
dc.subject.keywordHarmonic generationeng
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationSalman Durmuslar, A., Department of Naval Architecture and Marine Engineering, Faculty of Engineering, Piri Reis University, Istanbul, 34940, Turkey
dc.affiliationMora-Ramos, M.E., Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos 62209, Mexico, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationUngan, F., Department of Optical Engineering, Faculty of Technology, Sivas Cumhuriyet University, Sivas, Turkey
dc.relation.referencesBaskoutas, S., Paspalakis, E., Terzis, A.F., Electronic structure and nonlinear optical rectification in a quantum dot: effects of impurities and external electric field (2007) J. Phys. Condens. Matter, 19, p. 395024
dc.relation.referencesChen, B., Guo, K.-X., Wang, R.-Z., Zheng, Y.-B., Li, B., Nonlinear optical rectification in asymmetric double triangular quantum wells (2008) Eur. Phys. J. B, 66, pp. 227-233
dc.relation.referencesChen, T., Xie, W., Liang, S., The nonlinear optical rectification of an ellipsoidal quantum dot with impurity in the presence of an electric field (2012) Physica E, 44, pp. 786-790
dc.relation.referencesDakhlaoui, H., Nefzi, M., Tuning the linear and nonlinear optical properties in double and triple δ -doped GaAs semiconductor: impact of electric and magnetic fields (2019) Superlattices Microstruct., 136, p. 106292
dc.relation.referencesGanguly, J., Saha, S., Pal, S., Ghosh, M., Fabricating third-order nonlinear optical susceptibility of impurity doped quantum dots in the presence of Gaussian white noise (2016) Opt. Commun., 363, pp. 47-56
dc.relation.referencesGiraldo-Tobon, E., Ospina, W., Miranda-Pedraza, G.L., Mora-Ramos, M.E., Influence of applied electric fields on the electron-related second and third-order nonlinear optical responses in two dimensional elliptic quantum dots (2015) Superlattices Microstruct., 83, pp. 157-167
dc.relation.referencesGuo, K.-X., Gu, S.-W., Nonlinear optical rectification in parabolic quantum wells with an applied electric field (1993) Phys. Rev. B, 47, pp. 16322-16325
dc.relation.referencesGuo, K.-X., Chen, C.-Y., Das, T.P., Studies on the third-harmonic generation of double-layered quantum wires in magnetic fields (2001) Opt. Quantum Electron., 33, pp. 231-237
dc.relation.referencesIoriatti, L., Thomas-Fermi theory of 5-doped semiconductor structures: exact analytical results in the high-density limit (1990) Phys. Rev. B, 41, pp. 8340-8344
dc.relation.referencesKarabulut, I., Safak, H., Nonlinear optical rectification in semiparabolic quantum wells with an applied electric field (2005) Physica B, 368, pp. 82-87
dc.relation.referencesKarabulut, I., Mora-Ramos, M.E., Duque, C.A., Nonlinear optical rectification and optical absorption in GaAs–Ga1–xAlxAs asymmetric double quantum wells: combined effects of applied electric and magnetic fields and hydrostatic pressure (2011) J. Lumin., 131, pp. 1502-1509
dc.relation.referencesKarimi, M.J., Keshavarz, A., Second harmonic generation in asymmetric double semi-parabolic quantum wells: effects of electric and magnetic fields, hydrostatic pressure and temperature (2012) Physica E, 44, pp. 1900-1904
dc.relation.referencesKirak, M., Altinok, Y., The electric field effects on the third-harmonic generation in spherical quantum dots with parabolic confinement (2012) Eur. Phys. J. B, 85, p. 344
dc.relation.referencesKozuka, Y., Kim, M., Ohta, H., Hikita, Y., Bell, C., Hwang, H.Y., Enhancing the electron mobility via delta-doping in SrTiO3 (2010) App. Phys. Lett., 97, p. 222115
dc.relation.referencesLi, B., Guo, K.-X., Zhang, C.-J., Zheng, Y.-B., The second-harmonic generation in parabolic quantum dots in the presence of electric and magnetic fields (2007) Phys. Lett. A, 367, pp. 493-497
dc.relation.referencesLi, B., Guo, K.-X., Liu, Z.-L., Zheng, Y.-B., Nonlinear optical rectification in parabolic quantum dots in the presence of electric and magnetic fields (2008) Phys. Lett. A, 372, pp. 1337-1340
dc.relation.referencesLi, X., Zhang, C., Tang, Y., Wang, B., Nonlinear optical rectification in asymmetric quantum dots with an external static magnetic field (2014) Physica E, 56, pp. 130-133
dc.relation.referencesLiu, X., Zou, L., Liu, C., Zhang, Z.-H., Yuan, J.-H., The nonlinear optical rectification and second harmonic generation in asymmetrical Gaussian potential quantum well: effects of hydrostatic pressure, temperature and magnetic field (2016) Opt. Mater., 53, pp. 218-223
dc.relation.referencesLiu, G., Guo, K., Zhang, Z., Hassanbadi, H., Lu, L., Electric field effects on nonlinear optical rectification in symmetric coupled AlxGa1-xAs/ GaAs quantum wells (2018) Thin Solid Films, 662, pp. 27-32
dc.relation.referencesMartínez-Orozco, J.C., Rodríguez-Magdaleno, K.A., Suárez-López, J.R., Duque, C.A., Restrepo, R.L., Absorption coefficient and relative refractive index change for a double δ -doped GaAs MIGFET-like structure: electric and magnetic field effects (2016) Superlattices Microstruct., 92, pp. 166-173
dc.relation.referencesMartínez-Orozco, J.C., Rojas-Briseño, J.G., Rodríguez-Magdaleno, K.A., Rodríguez-Vargas, I., Mora-Ramos, M.E., Restrepo, R.L., Ungan, F., Duque, C.A., Effect of the magnetic field on the nonlinear optical rectification and second and third harmonic generation in double δ -doped GaAs quantum wells (2017) Physica B, 525, pp. 30-35
dc.relation.referencesMora-Ramos, M.E., Duque, C.A., Kasapoglu, E., Sari, H., Sokmen, I., Linear and nonlinear optical properties in a semiconductor quantum well under intense laser radiation: effects of applied electromagnetic fields (2012) J. Lumin., 132, pp. 901-913
dc.relation.referencesOzturk, E., Optical intersubband transitions in double Si δ -doped GaAs under an applied magnetic field (2009) Superlattices Microstruct., 46, pp. 752-759
dc.relation.referencesPanda, S., Das, T., Panda, B.K., Nonlinear optical susceptibilities in InxGa1-xN/ GaN hexagonal single quantum well under applied electric field (2019) Superlattices Microstruct., 135, p. 106238
dc.relation.referencesRestrepo, R.L., Kasapoglu, E., Sakiroglu, S., Ungan, F., Morales, A.L., Duque, C.A., Second and third harmonic generation associated to infrared transitions in a Morse quantum well under applied electric and magnetic fields (2017) Infrared Phys. Technol., 85, pp. 147-153
dc.relation.referencesRezaei, G., Karimi, M.J., Third harmonic generation in a coaxial cylindrical quantum well wire: magnetic field and geometrical size effects (2012) Opt. Commun., 285, pp. 5467-5471
dc.relation.referencesRodíguez-Magdaleno, K.A., Martínez-Orozco, J.C., Rodríguez-Vargas, I., Mora-Ramos, M.E., Duque, C.A., Asymmetric GaAs n-type double δ -doped quantum wells as a source of intersubband-related nonlinear optical response: effects of an applied electric field (2014) J. Lumin., 147, pp. 77-84
dc.relation.referencesRosencher, E., Bois, P., Model system for optical nonlinearities: asymmetric quantum wells (1991) Phys. Rev. B, 44, pp. 11315-11327
dc.relation.referencesRosencher, E., Bois, P., Nagle, J., Costard, E., Delaitre, S., Observation of nonlinear optical rectification at 10.6 μ m in compositionally asymmetrical AlGaAs multiquantum wells (1989) Phys. Lett., 55, pp. 1597-1599
dc.relation.referencesShao, S., Gou, K.X., Zhang, Z.H., Li, N., Peng, C., Third-harmonic generation in cylindrical quantum dots in a static magnetic field (2011) Solid State Commun., 151, pp. 289-292
dc.relation.referencesTsang, L., Ahn, D., Chuang, S.L., Electric field control of optical second harmonic generation in a quantum well (1988) Appl. Phys. Lett., 52, pp. 697-699
dc.relation.referencesVaseghi, B., Sadri, M., Rezaei, G., Gharaati, A., Optical rectification and third harmonic generation of spherical quantum dots: controlling via external factors (2015) Physica B, 457, pp. 212-217
dc.relation.referencesWang, G., Third-harmonic generation in cylindrical parabolic quantum wires with an applied electric field (2005) Phys. Rev. B, 72, p. 155329
dc.relation.referencesXia, J.-B., Fan, W.-J., Electronic structures of superlattices under in-plane magnetic field (1989) Phys. Rev. B, 40, pp. 8508-8515
dc.relation.referencesYıldırım, H., Tomak, M., Nonlinear intersubband optical absorption of Si δ -doped GaAs under an electric field (2006) Phys. Stat. Sol. (b), 243, pp. 2874-2881
dc.relation.referencesYu, Y.B., Wang, H.J., Third-harmonic generation in two-dimensional pseudodot system with applied magnetic field (2011) Superlattice Microstruct., 50, pp. 252-260
dc.relation.referencesZhang, L., Xie, H.-J., Electric field effect on the second-order nonlinear optical properties of parabolic and semiparabolic quantum wells (2003) Phys. Rev. B, 68, p. 235315
dc.relation.referencesZhang, L., Xie, H.-J., Bound states and third-harmonic generation in a semi-parabolic quantum well with an applied electric field (2004) Physica E, 22, pp. 791-796
dc.relation.referencesZhang, Z.-H., Guo, K.-X., Chen, B., Wang, R.-Z., Kang, M.-W., Nonlinear optical rectification in cubical quantum dots (2009) Phys. B Condens. Matter, 404, pp. 2332-2335
dc.relation.referencesZhang, Z.-H., Guo, K.-X., Chen, B., Wang, R.-Z., Kang, M.-W., Third-harmonic generation in cubical quantum dots (2009) Superlattices Microstruct., 46, pp. 672-678

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record