Mostrar el registro sencillo del ítem

dc.creatorUgarte J.P.
dc.creatorTobón C.
dc.creatorSaiz J.
dc.creatorLopes A.M.
dc.creatorTenreiro Machado J.A.
dc.date2020
dc.date.accessioned2021-02-05T14:58:47Z
dc.date.available2021-02-05T14:58:47Z
dc.identifier.issn10075704
dc.identifier.urihttp://hdl.handle.net/11407/6018
dc.descriptionThe computational modeling of the cardiac electrophysiology allows assertive and quantitative study of the atrial fibrosis under fibrillation conditions. The cardiac electrical propagation is described by the so-called monodomain model, that consists of a nonlinear parabolic reaction-diffusion equation. Fibroblast proliferation, which is an essential component of the fibrotic process, can be modeled by considering the membrane ionic kinetics as a reactive component. However, such a mathematical description does not account the structural feature of fibroblasts. In this work, the electrophysiological properties of fibroblast proliferation and coupling with cardiomyocytes are investigated, using mathematical and computational modelling. The study is focused on the conditions under which spontaneous activations occur in a fibrotic domain. The proposed fibrosis model takes account the electrical and structural interactions of fibroblasts within the myocardium. The electrical component is described through an ionic kinetics formalism, while the structural component is obtained by means of a triplet of complex order derivatives that constructs the diffusion operator. A theoretical analysis determines the model parameters that generate unstable solutions, and numerical simulations illustrate and validate the analytical outcomes. The results evince a strong modulation of the stability conditions of the fibrotic model by the real and imaginary part of the fractional derivative order. The fibrosis structural complexity, controlled by the fractional order, determines the extent of the parameter space that generates spontaneous activation. Moreover, not all the unstable parameter configurations generate electrical propagation. In the cases of electrical conduction after spontaneous activation, the conduction velocity in the fibrotic domain is significantly slower than the one observed in healthy atrial tissue. The results give a new perspective for the development of atrial fibrosis models including the ectopic activity as an initiation factor for fibrillation activity. Indeed, the proposed design exploits the complex order fractional derivatives, to generate a wide set of electrophysiological scenarios. © 2020 Elsevier B.V.
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85097110396&doi=10.1016%2fj.cnsns.2020.105618&partnerID=40&md5=1ba48af7022d3f6c99d6d5e692e5b342
dc.sourceCommunications in Nonlinear Science and Numerical Simulation
dc.subjectAtrial fibrosisspa
dc.subjectComplex order derivativesspa
dc.subjectSpontaneous activationspa
dc.subjectStability analysisspa
dc.titleSpontaneous activation under atrial fibrosis: A model using complex order derivatives
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.identifier.doi10.1016/j.cnsns.2020.105618
dc.subject.keywordCell cultureeng
dc.subject.keywordComputation theoryeng
dc.subject.keywordElectrophysiologyeng
dc.subject.keywordFibroblastseng
dc.subject.keywordLinear equationseng
dc.subject.keywordNonlinear equationseng
dc.subject.keywordCardiac electrophysiologyeng
dc.subject.keywordComplex-order derivativeseng
dc.subject.keywordComputational modellingeng
dc.subject.keywordElectrophysiological propertieseng
dc.subject.keywordFibroblast proliferationeng
dc.subject.keywordMathematical descriptionseng
dc.subject.keywordNonlinear parabolic reactioneng
dc.subject.keywordStructural interactionseng
dc.subject.keywordChemical activationeng
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationUgarte, J.P., GIMSC, Universidad de San Buenaventura, Medellín, Colombia
dc.affiliationTobón, C., MATBIOM, Universidad de Medellín, Medellín, Colombia
dc.affiliationSaiz, J., CI2B, Universitat Politècnica de València, Valencia, Spain
dc.affiliationLopes, A.M., UISPA-LAETA/INEGI, Faculty of Engineering, University of Porto, Porto, Portugal
dc.affiliationTenreiro Machado, J.A., Department of Electrical Engineering, Institute of Engineering, Polytechnic of Porto, Porto, Portugal
dc.relation.referencesCorradi, D., Atrial fibrillation from the pathologist's perspective (2014) Cardiovas Pathol, 23, pp. 71-84
dc.relation.referencesKallergis, E.M., Goudis, C.A., Vardas, P.E., Atrial fibrillation: a progressive atrial myopathy or a distinct disease? (2014) Int J Cardiol, 171, pp. 126-133
dc.relation.referencesKirchhof, P., Benussi, S., Kotecha, D., Ahlsson, A., Atar, D., Casadei, B., 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS (2016) Europace, 18 (11), pp. 1609-1678
dc.relation.referencesHaïssaguerre, M., Jaïs, P., Shah, D.C., Takahashi, A., Hocini, M., Quiniou, G., Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins (1998) N Engl J Med, 339 (10), pp. 659-666
dc.relation.referencesDilaveris, P., Antoniou, C.-K., Manolakou, P., Tsiamis, E., Gatzoulis, K., Tousoulis, D., Biomarkers associated with atrial fibrosis and remodeling (2018) Curr Med Chem, 26 (5), pp. 780-802
dc.relation.referencesQuinn, T.A., Camelliti, P., Rog-Zielinska, E.A., Siedlecka, U., Poggioli, T., O'Toole, E.T., Electrotonic coupling of excitable and nonexcitable cells in the heart revealed by optogenetics (2016) Proc Natl Acad Sci, 113 (51), pp. 14852-14857
dc.relation.referencesCamelliti, P., Green, C.R., LeGrice, I., Kohl, P., Fibroblast network in rabbit sinoatrial node: structural and functional identification of homogeneous and heterogeneous cell coupling. (2004) Circ Res, 94 (6), pp. 828-835
dc.relation.referencesMiragoli, M., Salvarani, N., Rohr, S., Myofibroblasts induce ectopic activity in cardiac tissue (2007) Circ Res, 101, pp. 755-758
dc.relation.referencesBrown, T.R., Krogh-Madsen, T., Christini, D.J., Computational approaches to understanding the role of fibroblast-myocyte interactions in cardiac arrhythmogenesis (2015) BioMed Res Int, 2015
dc.relation.referencesGreisas, A., Zlochiver, S., Modulation of spiral-wave dynamics and spontaneous activity in a fibroblast/myocyte heterocellular tissue–a computational study. (2012) IEEE Trans Biomed Eng, 59 (5), pp. 1398-1407
dc.relation.referencesTveito, A., Lines, G., Artebrant, R., Skavhaug, O., Maleckar, M.M., Existence of excitation waves for a collection of cardiomyocytes electrically coupled to fibroblasts (2011) Math Biosci, 230 (2), pp. 79-86
dc.relation.referencesMaccannell, K.A., Bazzazi, H., Chilton, L., Shibukawa, Y., Clark, R.B., Giles, W.R., A mathematical model of electrotonic interactions between ventricular myocytes and fibroblasts (2007) Byophys J, 92 (June), pp. 4121-4132
dc.relation.referencesMaleckar, M.M., Greenstein, J.L., Giles, W.R., Trayanova, N.A., Electrotonic coupling between human atrial myocytes and fibroblasts alters myocyte excitability and repolarization (2009) Biophys J, 97, pp. 2179-2190
dc.relation.referencesClayton, R.H., Bernus, O., Cherry, E.M., Dierckx, H., Fenton, F.H., Mirabella, L., Models of cardiac tissue electrophysiology: progress, challenges and open questions (2011) Prog Biophys Mol Biol, 104, pp. 22-48
dc.relation.referencesBezekci, B., Biktashev, V.N., Strength-duration relationship in an excitable medium (2020) Commun Nonlinear Sci NumerSimul, 80
dc.relation.referencesTrayanova, N.A., Boyle, P.M., Arevalo, H.J., Zahid, S., Exploring susceptibility to atrial and ventricular arrhythmias resulting from remodeling of the passive electrical properties in the heart: a simulation approach (2014) Front Physiol, 5
dc.relation.referencesMorgan, R., Colman, M.A., Chubb, H., Seemann, G., Aslanidi, O.V., Slow conduction in the border zones of patchy fibrosis stabilizes the drivers for atrial fibrillation: insights from multi-scale human atrial modeling (2016) Front Physiol, 7 (OCT), pp. 1-15
dc.relation.referencesChen, R., Wen, C., Fu, R., Li, J., Wu, J., The effect of complex intramural microstructure caused by structural remodeling on the stability of atrial fibrillation: insights from a three-dimensional multi-layer modeling study (2018) PLoS ONE, 13 (11), pp. 1-23
dc.relation.referencesAronis, K.N., Ali, R., Trayanova, N.A., The role of personalized atrial modeling in understanding atrial fibrillation mechanisms and improving treatment (2019) Int J Cardiol, 287, pp. 139-147
dc.relation.referencesBueno-Orovio, A., Kay, D., Grau, V., Rodriguez, B., Burrage, K., Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization (2014) J R Soc Interface, 11 (97)
dc.relation.referencesUgarte, J.P., Tobón, C., Lopes, A.M., Tenreiro Machado, J.A., Atrial rotor dynamics under complex fractional order diffusion (2018) Front Physiol, 9 (JUL), pp. 1-14
dc.relation.referencesCusimano, N., Gizzi, A., Fenton, F.H., Filippi, S., Gerardo-Giorda, L., Key aspects for effective mathematical modelling of fractional-diffusion in cardiac electrophysiology: a quantitative study (2020) Commun Nonlinear Sci NumerSimul, 84
dc.relation.referencesCaptur, G., Karperien, A.L., Li, C., Zemrak, F., Tobon-Gomez, C., Gao, X., Fractal frontiers in cardiovascular magnetic resonance: towards clinical implementation (2015) J Cardiovasc Magn Reson, 17 (1), pp. 1-10
dc.relation.referencesCaptur, G., Karperien, A.L., Hughes, A.D., Francis, D.P., Moon, J.C., The fractal heart-embracing mathematics in the cardiology clinic (2016) Nat Rev Cardiol, 14 (1), pp. 56-64
dc.relation.referencesHuo, Y., Kassab, G.S., Scaling laws of coronary circulation in health and disease (2016) J Biomech, 49 (12), pp. 2531-2539
dc.relation.referencesButera, S., Di Paola, M., A physically based connection between fractional calculus and fractal geometry (2014) Ann Phys, 350, pp. 146-158
dc.relation.referencesLiang, Y.S., Su, W.Y., The relationship between the Box dimension of the Besicovitch functions and the orders of their fractional calculus (2008) Appl Math Comput, 200 (1), pp. 297-307
dc.relation.referencesNigmatullin, R.R., Zhang, W., Gubaidullin, I., Accurate relationships between fractals and fractional integrals: new approaches and evaluations (2017) Fract Calc Appl Anal, 20 (5), pp. 1263-1280
dc.relation.referencesTarasov, V.E., Electromagnetic waves in non-integer dimensional spaces and fractals (2015) Chaos Solitons Fractals, 81, pp. 38-42
dc.relation.referencesYao, K., Liang, Y.S., Zhang, F., On the connection between the order of the fractional derivative and the Hausdorff dimension of a fractal function (2009) Chaos Solitons Fractals, 41 (5), pp. 2538-2545
dc.relation.referencesNigmatullin, R.R., Le Mehaute, A., Is there geometrical/physical meaning of the fractional integral with complex exponent? (2005) J Non-Cryst Solids, 351 (33–36 SPEC. ISS.), pp. 2888-2899
dc.relation.referencesNigmatullin, R.R., Baleanu, D., New relationships connecting a class of fractal objects and fractional integrals in space (2013) Fract Calc Appl Anal, 16 (4), pp. 911-936
dc.relation.referencesNigmatullin, R.R., Baleanu, D., Relationships between 1D and space fractals and fractional integrals and their applications in physics (2019) Applications in Physics, Part A, pp. 183-220. , Tarasov V.E. De Gruyter Berlin, Boston
dc.relation.referencesSornette, D., Discrete-scale invariance and complex dimensions (1998) Phys Rep, 297 (5), pp. 239-270
dc.relation.referencesKaramitsos, T.D., Arvanitaki, A., Karvounis, H., Neubauer, S., Ferreira, V.M., Myocardial tissue characterization and fibrosis by imaging (2020) JACC Cardiovasc Imaging, 13 (5), pp. 1221-1234
dc.relation.referencesUgarte, J.P., Tobon, C., Lopes, A.M., Machado, J.A.T., A complex order model of atrial electrical propagation from fractal porous cell membrane (2020) Fractals
dc.relation.referencesOrtigueira, M.D., Machado, J.A.T., On fractional vectorial calculus (2018) Bull Polish Acad Sci Tech Sci, 66 (4), pp. 389-402
dc.relation.referencesOrtigueira, M., Machado, J., Which Derivative? (2017) Fractal Fract, 1 (1)
dc.relation.referencesTveito, A., Lines, G.T., A condition for setting off ectopic waves in computational models of excitable cells (2008) Math Biosci, 213 (2), pp. 141-150
dc.relation.referencesSzekeres, B.J., Izsák F. Numerical solution of fractional order diffusion problems with Neumann boundary conditions2014;:1–27
dc.relation.referencesIlić, M., Liu, F., Turner, I., Anh, V., Numerical approximation of a fractional-in-space diffusion equation (II)-with nonhomogeneous boundary conditions (2006) Fract Calc Appl Anal, 9 (4), pp. 333-349
dc.relation.referencesMaleckar, M.M., Greenstein, J.L., Giles, W.R., Trayanova, N.A., K+ current changes account for the rate dependence of the action potential in the human atrial myocyte (2009) Am J Physiol HeartCir Physiol, 297, pp. H1398-H1410
dc.relation.referencesBueno-Orovio, A., Kay, D., Burrage, K., Fourier spectral methods for fractional-in-space reaction-diffusion equations (2014) BIT Numer Math, 54 (4), pp. 937-954
dc.relation.referencesRudy, Y., Electrotonic cell-cell interactions in cardiac tissue: effects on action potential propagation and repolarization (2005) Ann New York Acad Sci, 1047, pp. 308-313
dc.relation.referencesGraux, P., Carlioz, R., Rivat, P., Bera, J., Guyomar, Y., Dutoit, A., Wavelength and atrial vulnerability: an endocavitary approach in humans (1998) Pacing Clin Electrophysiol PACE, 21 (1), pp. 202-208
dc.relation.referencesHansson, A., Holm, M., Blomström, P., Johansson, R., Lührs, C., Brandt, J., Right atrial free wall conduction velocity and degree of anisotropy in patients with stable sinus rhythm studied during open heart surgery (1998) Eur Heart J, 19 (2), pp. 293-300
dc.relation.referencesZheng, Y., Xia, Y., Carlson, J., Kongstad, O., Yuan, S., Atrial average conduction velocity in patients with and without paroxysmal atrial fibrillation (2017) Clin Physiol Funct Imaging, 37 (6), pp. 596-601
dc.relation.referencesBelhassen, B., Glick, A., Viskin, S., Reentry in a pulmonary vein as a possible mechanism of focal atrial fibrillation (2004) J Cardiovasc Electrophysiol, 15 (7), pp. 824-828
dc.relation.referencesShah, D.C., Häissaguerre, M., Jäis, P., Clémenty, J., High-resolution mapping of tachycardia originating from the superior vena cava: evidence of electrical heterogeneity, slow conduction, and possible circus movement reentry (2002) J Cardiovasc Electrophysiol, 13 (4), pp. 388-392
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem