Mostrar el registro sencillo del ítem

dc.creatorRojas-Valencia N.
dc.creatorNúñez-Zarur F.
dc.date2020
dc.date.accessioned2021-02-05T14:58:55Z
dc.date.available2021-02-05T14:58:55Z
dc.identifier.issn404020
dc.identifier.urihttp://hdl.handle.net/11407/6034
dc.descriptionWe investigate on the origin of the high reactivity of triazolinediones compared to maleimides in Diels-Alder reactions by using a combination of Molecular Orbital Theory and the Activation Strain Model of reactivity. Calculations at M06-2X/6–311++G(d,p)//M06-2X/6-31+G(d) level show that the energy barrier of the cycloaddition between anthracene and triazolinedione is much lower than that for maleimides. The analysis of frontier molecular orbitals (FMO) reveals that for the TAD system there is a much efficient charge transfer as consequence of a more delocalized HOMO over the dienophile fragment at the transition state structure. The Activation Strain Model revealed that the higher reactivity of TAD in the cycloaddition is related to the lower distortion of both fragments to attain the geometry of the transition state. © 2020 Elsevier Ltd
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85089252149&doi=10.1016%2fj.tet.2020.131459&partnerID=40&md5=64af72f89eb3f1d9aa5034b7155d0d59
dc.sourceTetrahedron
dc.subjectActivation strain modelspa
dc.subjectCharge transferspa
dc.subjectDiels Alderspa
dc.subjectMaleimidesspa
dc.subjectStrain energiesspa
dc.subjectTriazolinedionesspa
dc.titleThe origin of the high reactivity of triazolinediones (TADs) in Diels-Alder reactions from a theoretical perspective
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.identifier.doi10.1016/j.tet.2020.131459
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationRojas-Valencia, N., Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 Nº 30-65, Medellín, 050026, Colombia
dc.affiliationNúñez-Zarur, F., Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 Nº 30-65, Medellín, 050026, Colombia
dc.relation.referencesDiels, O., Alder, K., (1928) Justus Liebigs Ann. Chem., 460, p. 98
dc.relation.referencesGregoritza, M., Brandl, F.P., (2015) Eur. J. Pharm. Biopharm., 97, p. 438
dc.relation.referencesFringuelli, F., Taticchi, A., The Diels–Alder Reaction: Selected Practical Methods (2002), John Wiley & Sons, Ltd Chichester
dc.relation.referencesDe Bruycker, K., Billiet, S., Houck, H.A., Chattopadhyay, S., Winne, J.M., Du Prez, F.E., (2016) Chem. Rev., 116, p. 3919
dc.relation.referencesBurrage, M.E., Cookson, R.C., Gupte, S.S., Stevens, I.D.R., (1975) J. Chem. Soc., Perkin Trans., 2, p. 1325
dc.relation.referencesChen, J.S., Houk, K.N., Foote, C.S., (1998) J. Am. Chem. Soc., 120, p. 12303
dc.relation.referencesFernandez-Herrera, M.A., Zavala-Oseguera, C., Cabellos, J.L., Sandoval-Ramirez, J., Domingo, L.R., Merino, G., (2014) J. Mol. Model., 20, p. 2207
dc.relation.referencesDomingo, L.R., Emamian, S.R., (2014) Indian J. Chem., 53A, p. 940
dc.relation.referencesLevandowski, B.J., Houk, K.N., (2015) J. Org. Chem., 80, p. 3530
dc.relation.referencesAdams, H., Elsunaki, T.M., Ojea-Jiménez, I., Jones, S., Meijer, A.J.H.M., (2010) J. Org. Chem., 75, p. 6252
dc.relation.referencesSanyal, A., Snyder, J.K., (2000) Org. Lett., 2, p. 2527
dc.relation.referencesBawa, R.A., Gautier, F.M., Adams, H., Meijer, A.J., Jones, S., (2015) Org. Biomol. Chem., 13, p. 10569
dc.relation.referencesChen, H., Yao, E., Xu, C., Meng, X., Ma, Y., (2014) Org. Biomol. Chem., 12, p. 5102
dc.relation.referencesAgopcan, S., Celebi-Olcum, N., Ucisik, M.N., Sanyal, A., Aviyente, V., (2011) Org. Biomol. Chem., 9, p. 8079
dc.relation.referencesHernández, J.P., Núñez-Zarur, F., Vivas, R., (2020) Chemistry Open, 9, p. 748
dc.relation.referencesHernández Mancera, J.P., Núñez-Zarur, F., Gutiérrez-Oliva, S., Toro-Labbé, A., Vivas-Reyes, R., (2020) J. Comput. Chem., 41, p. 2022
dc.relation.referencesRoy, N., Lehn, J.M., (2011) Chem. Asian J., 6, p. 2419
dc.relation.referencesDomingo, L.R., Ríos-Gutiérrez, M., Chamorro, E., Pérez, P., (2019) Org. Biomol. Chem., 17, p. 8185
dc.relation.referencesFrisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Fox, D.J., Gaussian 09, Revision D.01 (2016), Gaussian, Inc. Wallingford CT
dc.relation.referencesZhao, Y., Truhlar, D.G., (2008) Theor. Chem. Acc., 120, p. 215
dc.relation.referencesHehre, W.J., Ditchfield, R., Pople, J.A., (1972) J. Chem. Phys., 56, p. 2257
dc.relation.referencesClark, T., Chandrasekhar, J., Spitznagel, G.W., Schleyer, P.V., (1983) J. Comput. Chem., 4, p. 294
dc.relation.referencesFrisch, M.J., Pople, J.A., Binkley, J.S., (1984) J. Chem. Phys., 80, p. 3265
dc.relation.referencesHamlin, T.A., Levandowski, B.J., Narsaria, A.K., Houk, K.N., Bickelhaupt, F.M., (2019) Chem. Eur J., 25, p. 6342
dc.relation.referencesYepes, D., Valenzuela, J., Martinez-Araya, J.I., Perez, P., Jaque, P., (2019) Phys. Chem. Chem. Phys., 21, p. 7412
dc.relation.referencesLevandowski, B.J., Hamlin, T.A., Bickelhaupt, F.M., Houk, K.N., (2017) J. Org. Chem., 82, p. 8668
dc.relation.referencesLevandowski, B.J., Hamlin, T.A., Helgeson, R.C., Bickelhaupt, F.M., Houk, K.N., (2018) J. Org. Chem., 83, p. 3164
dc.relation.referencesLiu, F., Liang, Y., Houk, K.N., (2014) J. Am. Chem. Soc., 136, p. 11483
dc.relation.referencesFukui, K., (1981) Acc. Chem. Res., 14, p. 363
dc.relation.referencesSchäfer, A., Horn, H., Ahlrichs, R., (1992) J. Chem. Phys., 97, p. 2571
dc.relation.referencesSchäfer, A., Huber, C., Ahlrichs, R., (1994) J. Chem. Phys., 100, p. 5829
dc.relation.referencesLu, T., Chen, F., (2012) J. Comput. Chem., 33, p. 580
dc.relation.referencesvan Zeist, W.J., Bickelhaupt, F.M., (2010) Org. Biomol. Chem., 8, p. 3118
dc.relation.referencesFernandez, I., Bickelhaupt, F.M., (2014) Chem. Soc. Rev., 43, p. 4953
dc.relation.referencesFernandez, I., (2014) Phys. Chem. Chem. Phys., 16, p. 7662
dc.relation.referencesWolters, L.P., Bickelhaupt, F.M., (2015) WIREs Comput. Mol. Sci., 5, p. 324
dc.relation.referencesFernandez, I., Bickelhaupt, F.M., (2016) Chem. Asian J., 11, p. 3297
dc.relation.referencesBickelhaupt, F.M., Houk, K.N., (2017) Angew. Chem. Int. Ed., 56, p. 10070
dc.relation.referencesVermeeren, P., van der Lubbe, S.C.C., Fonseca Guerra, C., Bickelhaupt, F.M., Hamlin, T.A., (2020) Nat. Protoc., 15, p. 649
dc.relation.referencesCasals-Sainz, J.L., Francisco, E., Martín Pendás, Á., (2020) Z. Anorg. Allg. Chem., , Early View
dc.relation.referencesBader, R.F.W., (1985) Acc. Chem. Res., 18, p. 9
dc.relation.referencesZhao, L., von Hopffgarten, M., Andrada, D.M., Frenking, G., (2018) WIREs Comput. Mol. Sci., 8, p. e1345
dc.relation.referencesYepes, D., Donoso-Tauda, O., Pérez, P., Murray, J.S., Politzer, P., Jaque, P., (2013) Phys. Chem. Chem. Phys., 15, p. 7311
dc.relation.referencesGeerlings, P., De Proft, F., Langenaeker, W., (2003) Chem. Rev., 103, p. 1793
dc.relation.referencesDomingo, L.R., Rios-Gutierrez, M., Perez, P., (2016) Molecules, p. 21
dc.relation.referencesGeerlings, P., Chamorro, E., Chattaraj, P.K., De Proft, F., Gázquez, J.L., Liu, S., Morell, C., Ayers, P., (2020) Theor. Chem. Acc., 139, p. 36
dc.relation.referencesParr, R.G., Szentpály, L.V., Liu, S., (1999) J. Am. Chem. Soc., 121, p. 1922
dc.relation.referencesChattaraj, P.K., Sarkar, U., Roy, D.R., (2006) Chem. Rev., 106, p. 2065
dc.relation.referencesPérez, P., Domingo, L.R., Aizman, A., Contreras, R., Chapter 9 the electrophilicity index in organic chemistry (2007) Theoretical and Computational Chemistry, 19, p. 139. , A. Toro-Labbé Elsevier
dc.relation.referencesChattaraj, P.K., Giri, S., (2009) Annu. Rep. Sect. C Phys. Chem., 105, p. 13
dc.relation.referencesDomingo, L.R., Pérez, P., (2011) Org. Biomol. Chem., 9, p. 7168
dc.relation.referencesDomingo, L.R., Rios-Gutierrez, M., Perez, P., (2020) Org. Biomol. Chem., 18, p. 292
dc.relation.referencesEss, D.H., Jones, G.O., Houk, K.N., (2006) Adv. Synth. Catal., 348, p. 2337
dc.relation.referencesDomingo, L.R., Ríos-Gutiérrez, M., Pérez, P., (2020) RSC Adv., 10, p. 15394
dc.relation.referencesDomingo, L.R., Ríos-Gutiérrez, M., Pérez, P., (2017) Tetrahedron, 73, p. 1718
dc.relation.referencesAndrews, L.J., Keefer, R.M., (1955) J. Am. Chem. Soc., 77, p. 6284
dc.relation.referencesWise, K.E., Wheeler, R.A., (1999) J. Phys. Chem., 103, p. 8279
dc.relation.referencesKiselev, V.D., Miller, J.G., (1975) J. Am. Chem. Soc., 97, p. 4036
dc.relation.referencesSustmann, R., Dern, M., Kasten, R., Sicking, W., (1987) Chem. Ber., 120, p. 1315
dc.relation.referencesSustmann, R., Korth, H.-G., Nüchter, U., Siangouri-Feulner, J., Sicking, W., (1991) Chem. Ber., 124, p. 2811
dc.relation.referencesSuárez, D., Sordo, J.A., (1998) Chem. Commun., 385
dc.relation.referencesBerionni, G., Bertelle, P.-A., Marrot, J., Goumont, R., (2009) J. Am. Chem. Soc., 131, p. 18224
dc.relation.referencesSalavati-fard, T., Caratzoulas, S., Doren, D.J., (2015) J. Phys. Chem., 119, p. 9834
dc.relation.referencesDomingo, L.R., Saez, J.A., (2009) Org. Biomol. Chem., 7, p. 3576
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem