Mostrar el registro sencillo del ítem

dc.creatorForgionny A.
dc.creatorAcelas N.Y.
dc.creatorJimenez-Orozco C.
dc.creatorFlórez E.
dc.date2020
dc.date.accessioned2021-02-05T14:58:56Z
dc.date.available2021-02-05T14:58:56Z
dc.identifier.issn207608
dc.identifier.urihttp://hdl.handle.net/11407/6038
dc.descriptionA systematic DFT study was performed to evaluate the effect of oxygenated functional groups for Hg2+ adsorption in aqueous systems. This work includes several aspects usually neglected in many current works, namely, ground-state multiplicity, solvation effects, establishment of thermodynamic parameters, atomic charge transfer, and modeling of infrared spectra. In addition, two carbonaceous models were studied to account for both the effect of the carbonaceous matrix and the oxygenated functional groups on the Hg2+ binding. Adsorption energies indicated that Hg2+ adsorption on the unsaturated model is favored in the following order: phenol > lactone > semiquinone > carboxyl, whereas for the saturated model, the Hg2+ adsorption energy decrease order is: carboxyl > semiquinone > lactone. Thermodynamic parameters confirmed that the adsorption process is spontaneous (unsaturated model), while the infrared spectra provided an insight at the atomic level about the experimentally reported bands. Our results contributed to a deeper understanding of the current experimental information on the effect of the surface functional groups on the Hg2+ adsorption over carbonaceous materials as different active sites can be present on oxygenated carbonaceous materials for metal adsorption. The results also create new ways to improve the performance of adsorption capability of mercury and other pollutants. © 2020 Wiley Periodicals, Inc.
dc.language.isoeng
dc.publisherJohn Wiley and Sons Inc.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85084308339&doi=10.1002%2fqua.26258&partnerID=40&md5=82dbd6da8f9243b6cbaf3d4072eb5319
dc.sourceInternational Journal of Quantum Chemistry
dc.subjectadsorptionspa
dc.subjectaqueous solutionspa
dc.subjectcarbonaceous materialspa
dc.subjectmercuryspa
dc.subjectwater treatmentspa
dc.titleToward the design of efficient adsorbents for Hg2+ removal: Molecular and thermodynamic insights
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.identifier.doi10.1002/qua.26258
dc.subject.keywordAtomseng
dc.subject.keywordCharge transfereng
dc.subject.keywordDesign for testabilityeng
dc.subject.keywordEsterseng
dc.subject.keywordGround stateeng
dc.subject.keywordSpectroscopyeng
dc.subject.keywordThermodynamicseng
dc.subject.keywordAdsorption capabilityeng
dc.subject.keywordAdsorption energieseng
dc.subject.keywordAdsorption processeng
dc.subject.keywordCarbonaceous materialseng
dc.subject.keywordCarbonaceous matrixeng
dc.subject.keywordState multiplicityeng
dc.subject.keywordSurface functional groupseng
dc.subject.keywordThermodynamic parametereng
dc.subject.keywordAdsorptioneng
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationForgionny, A., Grupo de Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationAcelas, N.Y., Grupo de Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationJimenez-Orozco, C., Grupo de Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationFlórez, E., Grupo de Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.relation.referencesBonilla-Petriciolet, A., Mendoza-Castillo, D.I., Dotto, G.L., Duran-Valle, C.J., (2019) Adsorption in Water Treatment, , Elsevier Inc., Amsterdam
dc.relation.referencesBurakov, A.E., Galunin, E.V., Burakova, I.V., Kucherova, A.E., Agarwal, S., Tkachev, A.G., Gupta, V.K., (2018) Ecotoxicol. Environ. Saf., 148, p. 702
dc.relation.referencesHegazi, H.A., (2013) Hous. Build. Natl. Res. Cent. HBRC J., 9, p. 276
dc.relation.referencesMendoza-castillo, D.I., Ávila, H.E.R., (2017) Adsorption Processes for Water Treatment and Purication, , Eds.,, Springer, Cham, Switzerland
dc.relation.referencesDimpe, K.M., Nomngongo, P.N., (2017) Trends Environ. Anal. Chem., 16, p. 24
dc.relation.referencesBhatnagar, A., Sillanpää, M., Witek-krowiak, A., (2015) Chem. Eng. J., 270, p. 244
dc.relation.referencesAli, I., Gupta, V.K., (2007) Nat. Protoc., 1, p. 2661
dc.relation.referencesShen, C., Zhao, Y., Li, W., Yang, Y., Liu, R., Morgen, D., (2019) Chem. Eng. J., 372, p. 1019
dc.relation.referencesSun, Y., Yang, S., Chen, Y., Ding, C., Cheng, W., Wang, X., (2015) Enviromental Sci. Technol., 49, p. 4255
dc.relation.referencesLi, H., Dong, X., Evandro, B., De Oliveira, L.M., Chen, Y., Ma, L.Q., (2017) Chemosphere, 178, p. 466
dc.relation.referencesXu, X., Schierz, A., Xu, N., Cao, X., (2016) J. Colloid Interface Sci., 463, p. 55
dc.relation.referencesHadi, P., To, M., Hui, C., Sze, C., Lin, K., Mckay, G., (2015) Water Res., 3, p. 37
dc.relation.referencesHong, D., Zhou, J., Hu, C., Zhou, Q., Mao, J., Qin, Q., (2019) Fuel, 235, p. 326
dc.relation.referencesMaría, N., Alvarez, M., Marcelo, J., Lagos, Y., José, J., (2018) Sustain. Chem. Pharm., 10, p. 60
dc.relation.referencesGanguly, M., Dib, S., Ariya, P.A., (2018) Nat. Sci. Reports, 8, p. 1
dc.relation.referencesLi, B., Li, K., (2019) Chemosphere, 220, p. 28
dc.relation.referencesAsiabi, H., Yamini, Y., Shamsayei, M., Molaei, K., Shamsipur, M., (2018) J. Hazard. Mater., 357, p. 217
dc.relation.referencesGonzález, P.G., Pliego-cuervo, Y.B., (2014) Chem. Eng. Res. Des., 2, p. 2715
dc.relation.referencesMahmoud, M.E., Osman, M.M., Abdel-aal, H., Nabil, G.M., (2020) J. Alloy. Compd. J., 823, p. 1
dc.relation.referencesInyang, M.I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A., Pullammanappallil, P., Cao, X., (2016) Crit. Rev. Environ. Sci. Technol., 46, p. 406
dc.relation.referencesMohan, D., Sarswat, A., Sik, Y., Pittman, C.U., (2014) Bioresour. Technol., 160, p. 191
dc.relation.referencesYang, X., Wan, Y., Zheng, Y., He, F., Yu, Z., Huang, J., Wang, H., Gao, B., (2019) Chem. Eng. J., 366, p. 608
dc.relation.referencesShtepliuk, I., Caffr, N.M., Iakimov, T., Khranovskyy, V., Igor, A., (2017) Sci. Rep., 7, p. 1
dc.relation.referencesWang, L., Wang, Y., Ma, F., Tankpa, V., Bai, S., Guo, X., Wang, X., (2019) Sci. Total Environ., 668, p. 1298
dc.relation.referencesZhu, L., Tong, L., Zhao, N., Wang, X., Yang, X., Lv, Y., (2020) J. Hazard. Mater., 382. , 121002
dc.relation.referencesZhang, Y., Xu, X., Cao, L., Ok, Y.S., Cao, X., (2018) Chemosphere, 211, p. 1073
dc.relation.referencesKhaloo, S.S., Hossein Matin, A., Sharifi, S., Fadaeinia, M., Kazempour, N., Mirzadeh, S., (2012) Water Sci. Technol., 65, p. 1341
dc.relation.referencesIsmaiel, A.A., Aroua, M.K., Yusoff, R., (2013) Chem. Eng. J., 225, p. 306
dc.relation.referencesMohan, D., Gupta, V.K., Srivastava, S.K., Chander, S., (2001) Colloids Surfaces A Physicochem. Eng. Asp., 177, p. 169
dc.relation.referencesMondal, D.K., Nandi, B.K., Purkait, M.K., (2013) J. Environ. Chem. Eng., 1, p. 891
dc.relation.referencesSima, S., Hadavifar, M., Maleki, B., Mohammadnia, E., (2019) J. Water Process Eng., 32. , 100965
dc.relation.referencesSyafiqah, M.S.I., Yussof, H.W., (2018) Mater. Today Proc., 5, p. 21690
dc.relation.referencesRaji, F., Pakizeh, M., (2014) Appl. Surf. Sci., 301, p. 568
dc.relation.referencesLi, B., Yang, L., Wang, C.Q., Zhang, Q.P., Liu, Q.C., Li, Y.D., Xiao, R., (2017) Chemosphere, 175, p. 332
dc.relation.referencesSaleh, T.A., Gupta, V.K., Al-saadi, A.A., (2013) J. Colloid Interface Sci., 396, p. 264
dc.relation.referencesAl-saadi, A.A., Saleh, A., Kumar, V., (2013) J. Mol. Liq., 188, pp. 136-142
dc.relation.referencesHuang, Y., Hu, H., (2020) Chem. Eng. J., 381. , 122647
dc.relation.referencesRamirez, A., Ocampo, R., Giraldo, S., Padilla, E., Flórez, E., Acelas, N., (2020) J. Environ. Chem. Eng., 8. , 103702
dc.relation.referencesLiu, J., Cheney, M.A., Wu, F., Li, M., (2011) J. Hazard. Mater., 186, p. 108
dc.relation.referencesPadak, B., Wilcox, J., Carbon, N.Y., (2009), 47, pp. 2855-2864
dc.relation.referencesHe, P., Zhang, X., Peng, X., Jiang, X., Wu, J., Chen, N., (2015) J. Hazard. Mater., 300, p. 289
dc.relation.referencesZhang, B., Liu, J., Zheng, C., Chang, M., (2013) Proc. Combust. Inst., 34, p. 2811
dc.relation.referencesRungnim, C., Promarak, V., Hannongbua, S., Kungwan, N., Namuangruk, S., (2016) J. Hazard. Mater., 310, p. 253
dc.relation.referencesQu, W., Liu, J., Shen, F., Wei, P., Lei, Y., (2016) Chem. Eng. J., 306, p. 704
dc.relation.referencesYang, Y., Liu, J., Liu, F., Wang, Z., Miao, S., (2018) J. Hazard. Mater., 344, p. 104
dc.relation.referencesPadak, B., Brunetti, M., Lewis, A., Wilcox, J., (2006) Environ. Prog., 25, p. 319
dc.relation.referencesSellaoui, L., Mendoza-Castillo, D.I., Reynel-Ávila, H.E., Ávila-Camacho, B.A., Díaz-Muñoz, L.L., Ghalla, H., Bonilla-Petriciolet, A., Ben Lamine, A., (2019) Chem. Eng. J., 365, p. 305
dc.relation.referencesZhang, C., Wang, W., Duan, A., Zeng, G., Huang, D., Lai, C., Tan, X., Yang, Y., (2019) Chemosphere, 222, p. 184
dc.relation.referencesFrisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Fox, D.J., (2009), Gaussian, Inc, Wallingford, CT
dc.relation.referencesPerry, S.T., Hambly, E.M., Fletcher, T.H., Solum, M.S., Pugmire, R.J., (2000) Proc. Combust. Inst., 28, p. 2313
dc.relation.referencesEspinal, J.F., Montoya, A., Mondragón, F., Truong, T.N., (2004) J. Phys. Chem. B, 108, p. 1003
dc.relation.referencesAcelas, N.Y., Mejia, S.M., Mondragón, F., Flórez, E., (2013) Comput. Theor. Chem., 1005, p. 16
dc.relation.referencesKeith, T.A., Frisch, M.J., Modeling the hydrogen bond, ed. American Chemical Society, Washington, ACS Symp., 2009, 22
dc.relation.referencesAcelas, N.Y.A., Flórez, E., (2017) Desalin. Water Treat., 60, p. 66
dc.relation.referencesAcelas, N.Y., Hadad, C., Restrepo, A., Ibarguen, C., Flórez, E., (2017) Inorg. Chem., 56, p. 5455
dc.relation.referencesPaul, K.W., Kubicki, J.D., Sparks, D.L., (2006) Environ. Sci. Technol., 40, p. 7717
dc.relation.referencesPark, J., Sik, Y., Kim, S., Cho, J., Heo, J., Delaune, R.D., Seo, D., (2016) Chemosphere, 142, p. 77
dc.relation.referencesLi, Y.H., Lee, C.W., Gullett, B.K., Carbon, N.Y., (2002), 40, pp. 65-72
dc.relation.referencesValladares-Cisneros, M.G., Cárdenas, C.V., Burelo, P.D.L.C., Alemán, R.M.M., (2017) Rem. Ing. Univ., 16, p. 55
dc.relation.referencesSelvaraju, G., Kartini, N., Bakar, A., (2016) J. Clean. Prod., 141, p. 989
dc.relation.referencesDemiral, H., Demiral, H., (2018) J. Clean. Prod., 189, p. 602
dc.relation.referencesTzvetkov, G., Mihaylova, S., Stoitchkova, K., Tzvetkov, P., Spassov, T., (2016) Powder Technol., 299, p. 41
dc.relation.referencesDíaz-muñoz, L.L., Bonilla-petriciolet, A., Reynel-ávila, H.E., Mendoza-castillo, D.I., De México, T.N., De Aguascalientes, I.T., (2016) J. Mol. Liq., 215, p. 555
dc.relation.referencesArminda, M., Fabiana, S.M., Marianela, G., Cristina, D., (2018) Biochem. Pharmacol., 7, p. 1
dc.relation.referencesScott, A.P., Radom, L., (1996) J. Phys. Chem., 3654. , 16502
dc.relation.referencesDong, X., Zhu, Y., Li, Y., Gu, B., (2013) Environ. Sci. Technol., 47. , 12156
dc.relation.referencesMohammadnia, E., Hadavifar, M., Veisi, H., (2019) Polyhedron, 173. , 114139
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem