REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Visualization multi-instance data sets [Visualización de conjuntos de datos de múltiples instancias]

Thumbnail
Share this
Author
Valencia-Duque J.E.
Mera C.
Sepúlveda L.M.
TY - GEN T1 - Visualization multi-instance data sets [Visualización de conjuntos de datos de múltiples instancias] AU - Valencia-Duque J.E. AU - Mera C. AU - Sepúlveda L.M. UR - http://hdl.handle.net/11407/6049 PB - Associacao Iberica de Sistemas e Tecnologias de Informacao AB - In pattern recognition, multiple-instance learning algorithms have gained importance since they avoid that the user must delimit, the images individually in order to recognize the objects. This is an advantage over traditional learning algorithms since these considerably reduce the time required to prepare the data set. However, a disadvantage is that the resulting data sets are often complex, making it difficult to visualize them using traditional information visualization techniques. Thus, this work proposes a tool for the visualization and analysis of data sets of the multi-instance learning paradigm. The visualization proposal was evaluated using the expert criteria. In addition, different tests were carried out that show that a correct visualization can help to make decisions about the data set to improve the classification precision. © 2020, Associacao Iberica de Sistemas e Tecnologias de Informacao. All rights reserved. ER - @misc{11407_6049, author = {Valencia-Duque J.E. and Mera C. and Sepúlveda L.M.}, title = {Visualization multi-instance data sets [Visualización de conjuntos de datos de múltiples instancias]}, year = {}, abstract = {In pattern recognition, multiple-instance learning algorithms have gained importance since they avoid that the user must delimit, the images individually in order to recognize the objects. This is an advantage over traditional learning algorithms since these considerably reduce the time required to prepare the data set. However, a disadvantage is that the resulting data sets are often complex, making it difficult to visualize them using traditional information visualization techniques. Thus, this work proposes a tool for the visualization and analysis of data sets of the multi-instance learning paradigm. The visualization proposal was evaluated using the expert criteria. In addition, different tests were carried out that show that a correct visualization can help to make decisions about the data set to improve the classification precision. © 2020, Associacao Iberica de Sistemas e Tecnologias de Informacao. All rights reserved.}, url = {http://hdl.handle.net/11407/6049} }RT Generic T1 Visualization multi-instance data sets [Visualización de conjuntos de datos de múltiples instancias] A1 Valencia-Duque J.E. A1 Mera C. A1 Sepúlveda L.M. LK http://hdl.handle.net/11407/6049 PB Associacao Iberica de Sistemas e Tecnologias de Informacao AB In pattern recognition, multiple-instance learning algorithms have gained importance since they avoid that the user must delimit, the images individually in order to recognize the objects. This is an advantage over traditional learning algorithms since these considerably reduce the time required to prepare the data set. However, a disadvantage is that the resulting data sets are often complex, making it difficult to visualize them using traditional information visualization techniques. Thus, this work proposes a tool for the visualization and analysis of data sets of the multi-instance learning paradigm. The visualization proposal was evaluated using the expert criteria. In addition, different tests were carried out that show that a correct visualization can help to make decisions about the data set to improve the classification precision. © 2020, Associacao Iberica de Sistemas e Tecnologias de Informacao. All rights reserved. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
In pattern recognition, multiple-instance learning algorithms have gained importance since they avoid that the user must delimit, the images individually in order to recognize the objects. This is an advantage over traditional learning algorithms since these considerably reduce the time required to prepare the data set. However, a disadvantage is that the resulting data sets are often complex, making it difficult to visualize them using traditional information visualization techniques. Thus, this work proposes a tool for the visualization and analysis of data sets of the multi-instance learning paradigm. The visualization proposal was evaluated using the expert criteria. In addition, different tests were carried out that show that a correct visualization can help to make decisions about the data set to improve the classification precision. © 2020, Associacao Iberica de Sistemas e Tecnologias de Informacao. All rights reserved.
URI
http://hdl.handle.net/11407/6049
Collections
  • Indexados Scopus [1069]
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMSee Statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 340 5555 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com