Show simple item record

dc.creatorGaviria-Hdz J.F.
dc.creatorMedina L.J.
dc.creatorMera C.
dc.creatorChica L.
dc.creatorSepúlveda-Cano L.M.
dc.descriptionIn the last years the use of cellular concretes has been extended due to the rise in the ratio strength/weight reached. Porosity is a property that must be taken into account because it is associated directly to the performance of a cellular concrete. The mercury porosimetry and vacuum saturation are test used to concrete porosity. However, these tests are expensive, and it requires a careful preparation of samples. Another way to determine porosity and pore distribution over concrete is reconstruction using high-resolution images from microscopy. As an alternative, in this work we compare traditional edge detection methods and fractional derivate method to detect the pores in images taken from a flat sample of cellular concrete. The experiments show that the method based on fractional derivate is more accurate to detect the pores, which is the first step to estimate total porosity of cellular concrete through non-specialized images. © 2019 IEEE.
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.source2019 22nd Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2019 - Conference Proceedings
dc.subjectCellular concretespa
dc.subjectFractional Derivativespa
dc.subjectPore segmentationspa
dc.subjectPorosity estimationspa
dc.titleAssessment of segmentation methods for pore detection in cellular concrete images
dc.typeConference Papereng
dc.publisher.programIngeniería de Telecomunicacionesspa
dc.subject.keywordEdge detectioneng
dc.subject.keywordCellular concreteseng
dc.subject.keywordEdge detection methodseng
dc.subject.keywordFractional derivativeseng
dc.subject.keywordHigh resolution imageeng
dc.subject.keywordMercury porosimetryeng
dc.subject.keywordPorosity estimationeng
dc.subject.keywordSegmentation methodseng
dc.subject.keywordVacuum saturationeng
dc.subject.keywordImage segmentationeng
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationGaviria-Hdz, J.F., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationMedina, L.J., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationMera, C., Facultad de Ingeniería, Instituto Tecnológico Metropolitano, Medellín, Colombia
dc.affiliationChica, L., Facultad de Ingenierías, Universidad de Medellín, Medellín, Colombia
dc.affiliationSepúlveda-Cano, L.M., Facultad de Ingenierías, Universidad de Medellín, Medellín, Colombia
dc.relation.referencesChica, L., Alzate, A., Cellular concrete review: New trends for application in construction (2019) Construction and Building Materials on, 200, pp. 637-647
dc.relation.referencesRodríguez, J.A., Porosimetry by Mercury Injection, 6, Porosimetría Por Inyeccin de Mercurio, 6, ,, Retrieved from
dc.relation.referencesNambiar, E.K.K., Ramamurthy, K., Models relating mixture composition to the density and strength of foam concrete using response surface methodology (2006) Cement and Concrete Composites, 20 (9), pp. 752-760
dc.relation.referencesHilal, A.A., Thom, N.H., Dawson, A.R., On entrained pore size distribution of foamed concrete (2015) Construction and Building Materials, 75, pp. 227-233
dc.relation.referencesYu, X.G., Luo, S.S., Gao, Y.N., Wang, H.F., Li, X.Y., Wei, Y.R., Wang, X.J., Pore structure and microstructure of foam concrete (2010) Advanced Materials Research, 177, pp. 530-532
dc.relation.referencesChung, S.Y., Lehmann, C., Abd Erahman, M., Stephan, D., Pore characteristics and their effects on the material properties of foamed concrete evaluated using micro-ct images and numerical approaches (2017) Applied Sciences, 7 (6)
dc.relation.referencesYu, L., Man, Y., Cao, Q., Face recognition with histograms of fractional differential gradients (2014) Journal of Electronic Imaging, 23 (3)
dc.relation.referencesChe, J., Shi, Y., Xiang, Y., Ma, Y., The fractional differential enhancement of image texture features and its parallel processing optimization (2012) 5th International Congress on Image and Signal Processing, CISP
dc.relation.referencesLi, B., Xie, W., Adaptive fractional differential algorithm based on Otsu standard The 26th Chinese Control and Decision Conference (2014 CCDC), 2014
dc.relation.referencesJalab, H., Ibrahim, W., Texture enhancement for medical images based on fractional differential masks (2013) Discrete Dynamics in Nature and Society, , Hindawi
dc.relation.referencesTseng, C., Design of fractional order digital FIR differentiators (2001) Signal Processing Letters, 8, pp. 77-79. , IEEE
dc.relation.referencesTseng, C., Improved design of digital fractional-order differentiators using fractional sample delay (2006) Circuits and Systems I: Regular Papers, IEEE Transactions On., 53, pp. 193-203
dc.relation.referencesAmoako-Yirenkyi, P., Appati, J.K., Dontwi, I.K., A new construction of a fractional derivative mask for image edge analysys based on Riemann-Liouville fractional derivative (2016) Adv. Differ. Equ., 238 (123)
dc.relation.referencesVan Der Walt, S., Schnberger, J., Nunez-Iglesias, J., Boulogne, F., Warner, J., Yager, N., Gouillart, E., Yu, T., Scikitimage: Image processing in Python (2014) PeerJ, 2, p. e453. , the scikit-image contributors

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record