Mostrar el registro sencillo del ítem

dc.creatorGaleano L.
dc.creatorValencia S.
dc.creatorRestrepo G.
dc.creatorMarín J.M.
dc.date2019
dc.date.accessioned2021-02-05T14:59:04Z
dc.date.available2021-02-05T14:59:04Z
dc.identifier.issn13698001
dc.identifier.urihttp://hdl.handle.net/11407/6067
dc.descriptionTiO2 doped with nitrogen (N), silicon (Si), or selenium (Se) (N-TiO2, Si-TiO2, and Se-TiO2) were obtained by the integrated sol-gel and solvothermal method with short time of crystallization and low temperature. The UV/visible and visible light absorption and photocatalytic activity of these doped TiO2 materials were improved by a dry-co-grinding process with a short grinding time and low rotational speed (30 min at 200 rpm) to obtain N-TiO2/Si-TiO2 and N-TiO2/Se-TiO2 catalysts. The materials were characterized by XRD, Raman, BET surface area and porosity, XRF, SEM, TEM, FTIR-ATR, and UV/vis-DRS analyses. The photocatalytic activity of these materials was evaluated by the degradation of phenol under UV/visible and visible light irradiation. The integrated sol-gel and solvothermal methods with short time of crystallization (2 h) and low temperature (225 °C), and the dry-co-grinding process during 30 min at 200 rpm led to materials (N-TiO2/Si-TiO2 and N-TiO2/Se-TiO2) with higher specific surface area, a reduction in the band gap value, and an enhancement of the absorption in the visible light spectrum. Moreover, N-TiO2/Si-TiO2 and N-TiO2/Se-TiO2 exhibited higher photocatalytic activities for degradation of phenol under UV/visible and visible light irradiation than those obtained with the doped TiO2, synthesized TiO2 or TiO2 P25. © 2018 Elsevier Ltd
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85056447917&doi=10.1016%2fj.mssp.2018.10.032&partnerID=40&md5=6f1257beec245a025044bbf8ddc0b7c3
dc.sourceMaterials Science in Semiconductor Processing
dc.titleDry-co-grinding of doped TiO2 with nitrogen, silicon or selenium for enhanced photocatalytic activity under UV/visible and visible light irradiation for environmental applications
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambientalspa
dc.identifier.doi10.1016/j.mssp.2018.10.032
dc.relation.citationvolume91
dc.relation.citationstartpage47
dc.relation.citationendpage57
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationGaleano, L., Grupo de Investigaciones y Mediciones Ambientales (GEMA), Universidad de Medellín, Carrera 87 No 30-65, Medellín, Colombia, Grupo Procesos Fisicoquímicos Aplicados, Departamento de Ingeniería Química, Facultad de Ingeniería, Sede de Investigación Universit:aria, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
dc.affiliationValencia, S., Grupo de investigación Integra, Tecnológico de Antioquia, Calle 78B No 72A-220, Medellín, Colombia, Grupo Procesos Fisicoquímicos Aplicados, Departamento de Ingeniería Química, Facultad de Ingeniería, Sede de Investigación Universit:aria, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
dc.affiliationRestrepo, G., Grupo Procesos Fisicoquímicos Aplicados, Departamento de Ingeniería Química, Facultad de Ingeniería, Sede de Investigación Universit:aria, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
dc.affiliationMarín, J.M., Grupo Procesos Fisicoquímicos Aplicados, Departamento de Ingeniería Química, Facultad de Ingeniería, Sede de Investigación Universit:aria, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
dc.relation.referencesAkpan, U., Hameed, B.H., The advances in sol-gel method of doped-TiO2 photocatalyst (2017) Appl. Catal. A: Gen., 375, pp. 1-11
dc.relation.referencesAli, M., Transformation and powder characteristics of TiO2 during high-energy milling (2014) Ceram. Process. Res., 15, pp. 290-293
dc.relation.referencesAman, N., Das, N.N., Mishra, T., Effect of N-doping on visible light activity of TiO2-SiO2 mixed oxide photocatalyst (2016) J. Environ. Chem. Eng., 4, pp. 191-196
dc.relation.referencesAppavu, B., Thiripuranthagan, S., Visible active N, S codoped TiO2/graphite photocatalyst for the degradation of hazardous dyes (2017) J. Photochem. Photobiol. A: Chem., 340, pp. 146-156
dc.relation.referencesAsiah, M.N., Mamat, M.H., Khusaimi, Z., Abdullah, S., Rusop, M., Qurashi, Z., Structural and optical properties of hydrothermally synthesized mesoporous Si/TiO2 nanowire composites (2015) Microelectron. Eng., 136, pp. 31-35
dc.relation.referencesBergamonti, L., Predieri, G., Paz, Y., Fornasini, L., Lottici, P.P., Bondioli, F., Enhanced self-cleaning properties of N-doped TiO2 coating for cultural heritage (2017) Microchem. J., 133, pp. 1-12
dc.relation.referencesBui, D., Kang, S., Li, X., Mu, J., Effect of Si doping on the photocatalytic activity and photoelectrochemical property of TiO2 nanoparticles (2011) Catal. Commun., 13, pp. 14-17
dc.relation.referencesCheng, X., Yu, X., Xing, Z., Wan, J., Enhanced photocatalytic activity of nitrogen doped TiO2 anatase nano-particles under simulated sunlight irradiation (2012) Energy Procedia, 16, pp. 598-605
dc.relation.referencesChi, B., Zhao, L., Jin, T., One-step template-free route for synthesis of mesoporous N-doped titania spheres (2007) J. Phys. Chem. C, 11, pp. 6189-6193
dc.relation.referencesChong, M., Jin, B., Chow, C., Saint, C., Recent development in photocatalytic water treatment technology: a review (2010) Water Res., 44, pp. 2997-3027
dc.relation.referencesChoi, H., Jung, Y., Kim, S., Size effects in the raman spectra of TiO2 nanoparticles (2005) Vib. Spectrosc., 37, pp. 33-38
dc.relation.referencesDong, H., Zeng, G., Tang, L., Fan, C., Zhang, C., He, X., He, Y., An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures (2015) Water Res., 79, pp. 128-146
dc.relation.referencesDu, J., Li, X., Li, K., Gu, X., Qi, W., Zhang, K., High hydrophilic Si-doped nanowires by chemical vapor deposition (2016) J. Alloy. Compd., 687, pp. 893-897
dc.relation.referencesDu, J., Zhao, G., Shi, Y., Yang, H., Li, Y., Zhu, G., Mao, Y., Wang, W., A facile method for synthesis of N-doped TiO2 nanooctahedra, nanoparticles, and nanospheres and enhanced photocatalytic activity (2013) Appl. Surf. Sci., 273, pp. 278-286
dc.relation.referencesEstruga, M., Domingo, C., Doménech, X., Ayllón, J., Zirconium-doped and silicon-doped TiO2 photocatalysts synthesis from ionic-liquid-like precursors (2010) J. Colloid Interface Sci., 344, pp. 327-333
dc.relation.referencesFang, W., Xing, M., Zhang, J., Modifications on reduced titanium dioxide photocatalysts: a review (2017) J. Photochem. Photobiol. C: Photochem. Rev., 32, pp. 21-29
dc.relation.referencesGmurek, M., Olak-Kucharczyk, M., Ledakowicz, S., Photochemical decomposition of endocrine disrupting compounds - a review (2017) Chem. Eng. J., 310, pp. 437-456
dc.relation.referencesGurkan, Y., Kasapbasi, E., Cinar, Z., Enhanced solar photocatalytic activity of TiO2 by selenium(IV) ion-doping: characterization and DFT modeling of surface (2013) Chem. Eng. J., 214, pp. 33-44
dc.relation.referencesHernández, J.M., Cortez, L.A., García, R., San Martín, E., García, P., Brent, E., Cárdenas, G., García, L.A., Synthesis of solid acid catalysts base on TiO2-SiO4 2- and Pt/TiO2-SO4 2- applied in n-Hexane isomerization (2013) O. J. Metal., 3, pp. 34-44
dc.relation.referencesHidalgo, M.C., Colón, G., Navio, J., Modification of physicochemical properties of commercial TiO2 samples by soft mechanical activation (2002) J. Photochem. Photobiol. A: Chem., 148, pp. 341-348
dc.relation.referencesHu, C., Lian, C., Zheng, S., Duo, S., Zhang, R., Hu, Q., Zhang, S., Sun, Y., Grinding combined melt-diffusion synthesis of sulfur/P25 heterostructure for enhanced photocatalytic activity under visible light (2015) J. Mol. Catal. A: Chem., 407, pp. 182-188
dc.relation.referencesJia, T., Fu, F., Yu, D., Cao, J., Sun, G., Facile synthesis and characterization of N-doped TiO2/C nanocomposites with enhanced visible–light photocatalytic performance (2018) Appl. Surf. Sci., 438, pp. 438-447
dc.relation.referencesJin, R., Wu, Z., Liu, Y., Jiang, B., Wong, H., Photocatalytic reduction of NO with NH3 using Si-doped TiO2 prepared by hydrothermal method (2009) J. Hazard. Mater., 161, pp. 42-48
dc.relation.referencesKang, I., Zhang, Q., Kano, J., Yin, S., Sato, T., Saito, F., Synthesis of nitrogen doped TiO2 by grinding in gaseous NH3 (2007) J. Photochem. Photobiol. A: Chem., 189, pp. 232-238
dc.relation.referencesKang, I., Zhang, Q., Yin, S., Sato, T., Saito, F., Novel method for preparing of high visible active N-doped TiO2 photcatalyst with its grinding in solvent (2008) Appl. Catal. B: Environ., 84, pp. 570-576
dc.relation.referencesKang, I., Zhang, Q., Yin, S., Sato, T., Saito, F., Preparation of a visible sensitive carbon doped TiO2 photo-catalyst by grinding TiO2 with ethanol and heating treatment (2008) Appl. Catal. B: Environ., 80, pp. 81-87
dc.relation.referencesKhaki, M., Shafeeyan, M., Raman, A., Daud, W., Application of doped photocatalysts for organic pollutants degradation – a review (2017) J. Environ. Manag., 198, pp. 78-94
dc.relation.referencesKhan, H., Berk, D., Selenium modified oxalate chelated titania: characterization, mechanistic and photocatalytic studies (2015) Appl. Catal. A: Gen., 505, pp. 285-301
dc.relation.referencesKhataee, R., Kasiri, M.B., Photocatalytic degradation of organic dyes in presence of nanostructured titanium dioxide: influence of the chemical structured of dyes (2010) J. Mol. Catal. A: Chem., 328, pp. 8-26
dc.relation.referencesKhomane, R.B., Kulkarni, B.D., Paraskar, A., Sainkar, S.R., Synthesis, characterization and catalytic performance of titanium silicate prepared in micellar media (2002) Mater. Chem. Phys., 76, pp. 99-103
dc.relation.referencesLu, Z., Jiang, X., Zhou, B., Wu, X., Lu, L., Study of effect annealing temperature on the structure, morphology and photocatalytic activity of Si doped TiO2 thin films deposited by electron beam evaporation (2011) Appl. Surf. Sci., 257, pp. 10715-10720
dc.relation.referencesMazinani, B., Masron, A., Beitollani, A., Luque, R., Photocatalytic activity, surface area and phase modifications of mesoporous SiO2-TiO2 prepared by a one-step hydrothermal procedure (2014) Ceram. Int., 40, pp. 1125-11532
dc.relation.referencesMekprasart, W., Vittayakorn, N., Pecharapa, W., Ball-milled CuPc/TiO2 hybrid nanocomposite and its photocatalytic degradation of aqueous rhodamine B (2012) Mater. Res. Bull., 47, pp. 3114-3119
dc.relation.referencesMekprasart, W., Jarernboon, W., Pecharapa, W., nanocomposites prepared by low-energy ball Milling for dye-sensitized solar cell application (2010) Mater. Sci. Eng. B, 172, pp. 231-236
dc.relation.referencesMiao, J., Zhang, R., Zhang, L., Photocatalytic degradations of three dyes with different chemical structures using ball-milled TiO2 (2018) Mater. Res. Bull., 97, pp. 109-114
dc.relation.referencesMills, A., O´Rourke, C., Moore, K., Powder semiconductor photocatalysis in aqueous solution: an overview of kinetics-based reaction mechanisms (2015) J. Photochem. Photobiol. A: Chem., 310, pp. 66-105
dc.relation.referencesMosquera-Pretelt, J., Mejía, M., Marín, J.M., Synthesis and characterization of photoactive S-TiO2 from TiOSO4 precursor using an integrated sol-gel and solvothermal method at low temperatures (2018) J. Adv. Oxid. Technol., 21
dc.relation.referencesNagaveni, K., Hagde, M.S., Madras, G., Structure and photocatalytic Activity of Ti1-xMxO2±δ (M = W, V, Ce, Zr, Fe, and Cu) synthesized by solution combustion method (2004) J. Phys. Chem. B, 108, pp. 20204-20212
dc.relation.referencesPalmas, S., Polcaro, A.M., Rodriguez, J., Da, A., Effect of the mechanical activation on the photoelectrochemical properties of anatase powders (2009) Int. J. Hydrog. Energy, 34, pp. 9662-9670
dc.relation.referencesPan, X., Ma, X., Phase transformations in nanocrystalline TiO2 milled in different milling atmospheres (2004) J. Solid State Chem., 177, pp. 4098-4103
dc.relation.referencesPark, E., Jeong, B., Jeong, M., Kim, Y., Synergetic effects on hydrophilic surface modification and N-doping for visible light response on photocatalytic activity of TiO2 (2014) Curr. Appl. Phys., 14, pp. 300-305
dc.relation.referencesPhattalung, S., Limpijumnong, S., Yu, J., Passivated co-doping approach to band gap narrowing of titanium dioxide with enhanced photocatalytic activity (2017) Appl. Catal. B. Environ., 200, pp. 1-9
dc.relation.referencesRahimi, N., Pax, R., Gray, E., Review of functional titanium oxide. I: TiO2 and its modifications (2016) Prog. Solid State Chem., 4, pp. 86-105
dc.relation.referencesRockafellow, E., Haywood, J., Witte, T., Houk, R., Jenks, W., Selenium modified TiO2 and its impact on photocatalysis (2010) Langmuir, 26, pp. 19052-19059
dc.relation.referencesSahni, S., Reddy, S., Murty, B., Influence of process parameters on the synthesis of nano-titania by sol-gel route (2007) Mater. Sci. Eng. A, 452-453, pp. 758-762
dc.relation.referencesSaito, F., Baron, M., Dodds, J., Morphology control in size reduction processes (2004) Morphology Control of Materials and Nanoparticles, pp. 1-24. , Y. Waseda A. Muramatsu Springer Series in Materials Science Berlin, Heidelberg
dc.relation.referencesSano, T., Mera, N., Kanai, Y., Nishimoto, C., Tsutsui, S., Hirakawa, T., Negishi, N., Origin of visible-light activity of N-doped TiO2 photocatalyst: behaviors of N and S atoms in a wet N-dopping process (2012) Appl. Catal. B: Environ., 128, pp. 77-87
dc.relation.referencesShi, W., Chen, Q., Xu, Y., Wu, D., Huo, C.F., Investigation of the silicon concentration effect on Si-doped anatase TiO2 by first-principles calculation (2011) J. Solid Chem., 184, pp. 1983-1988
dc.relation.referencesShifu, C., Lei, C., Shen, G., Gengyu, C., The preparation of coupled SnO2/TiO2 photocatalyst by ball milling (2006) Mater. Chem. Phys., 98, pp. 116-120
dc.relation.referencesSi, P., Wang, H., Li, Z., Liu, J., Lee, J., Choi, C., Large scale synthesis of nitrogen doped TiO2 nanoparticles by reactive plasma (2012) Mater. Lett., 161, pp. 161-163
dc.relation.referencesThommes, M., Kaneko, H., Neimark, A., Olivier, J., Rodríguez-Reinoso, F., Rouquero, J., Sing, K., Physisorption of gases with special reference to the evaluation of Surface area and pore size distribution (IUPAC Technical report) (2015) Pure Appl. Chem.
dc.relation.referencesTran, V., Truong, T., Phan, T., Nguyen, T., Huynh, T., Agresti, A., Pescetelli, S., Di Carlo, A., Application of nitrogen-doped TiO2 nano-tubes in dye sensitized solar cells (2017) Appl. Surf. Sci., 399, pp. 515-522
dc.relation.referencesTruong, Q., Dien, L., Vo, D., Le, T., Controlled synthesis of titanium using water-soluble titanium complexes: a review (2017) J. Solid State Chem., 251, pp. 143-163
dc.relation.referencesValencia, S., Marin, J., Restrepo, G., Frimmel, F.H., Evaluation of natural organic matter changes from Lake Hohloh by three-dimensional excitation/emission matrix fluorescence spectroscopy during TiO2/UV process (2014) Water Res., 51, pp. 124-133
dc.relation.referencesValencia, S., Vargas, X., Rios, L., Restrepo, G., Marín, J., Sol-gel and low-temperature solvothermal synthesis of photoactive nanotitanium dioxide (2013) J. Photochem. Photobiol. A: Chem., 251, pp. 175-181
dc.relation.referencesValencia, S., Marín, J., Restrepo, G., Study of the band gap of synthesized titanium dioxide nanoparticles using the sol-gel method and a hydrothermal treatment (2010) Open Mater. Sci. J., 4, pp. 9-14
dc.relation.referencesVargas, X., Tauchertb, E., Marín, J.M., Restrepo, G., Dillert, R., Bahnemann, D., Fe-doped titanium dioxide synthesized: photocatalytic activity and mineralization study for azo dye (2012) J. Photochem. Photobiol. A: Chem., 243, pp. 17-22
dc.relation.referencesWen, J., Li, X., Liu, W., Fang, Y., Xie, J., Xu, Y., Photocatalysis fundamentals and surface modification of TiO2 nanomaterials (2015) Chin. J. Catal., 36, pp. 2019-2070
dc.relation.referencesXiao, J., Pan, Z., Zhang, B., Liu, G., Zhang, H., Song, X., Hu, G., Zheng, Y., The research of photocatalytic activity on Si doped TiO2 nanotubes (2017) Mater. Lett., 188, pp. 66-68
dc.relation.referencesYan, X., He, J., Evans, D., Duan, X., Zhu, Y., Preparation, characterization and photocatalytic activity of Si-doped and rare earth-doped TiO2 from mesoporous precursors (2005) Appl. Catal. B: Environ., 55, pp. 243-252
dc.relation.referencesYin, S., Aita, Y., Komatsu, M., Sato, T., Visible-light-induced photocatalytic activity of TiO2-xNy prepared by solvothermal process in urea-alcohol system (2006) J. Eur. Ceram. Soc., 26, pp. 2735-2742
dc.relation.referencesYin, S., Zhang, Q., Saito, F., Saito, T., Synthesis of titanium dioxide-based, visible-light induced photocatalysts by mechanochemical doping (2010) High-Energy Ball Milling Mechanochemical Processing of Nanopowders, pp. 304-330. , M. Sopicka-Lizer CRC Press L.L.C. Boca Raton, Florida
dc.relation.referencesYu, J., Yu, H., Cheng, B., Zhou, M., Zho, X., Enhanced photocatalytic of TiO2 powder (P-25) by hydrothermal treatment (2006) J. Mol. Catal. A: Chem., 253, pp. 112-118
dc.relation.referencesZangeneh, H., Zinatizadeh, A., Habibi, M., Akia, M., Isa, M., Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review (2015) J. Ind. Eng. Chem., 25, pp. 1-36
dc.relation.referencesZhang, Q., Wang, J., Yin, S., Sato, T., Saito, F., Synthesis of visible-light active TiO2-xSx photocatalyst by means of mechanochemical doping (2004) J. Am. Ceram. Soc., 87, pp. 1161-1163
dc.relation.referencesZheng, Z., Wang, X., Liu, J., Xiao, J., Hu, Z., Si doping influence on the catalytic performance of Pt/TiO2 mesoporous film catalyst for low-temperature methanol combustion (2014) Appl. Surf. Sci., 309, pp. 144-152
dc.relation.referencesZhihuan, Z., Jimin, F., Honghong, C., Yusuke, A., Shu, Y., Recent progress on mixed-anion type visible-light induced photocatalysts (2017) Sci. China Technol. Sci., 60, pp. 1447-1457
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem