Mostrar el registro sencillo del ítem

dc.creatorBertel R.
dc.creatorMora-Ramos M.E.
dc.creatorCorrea J.D.
dc.date2019
dc.date.accessioned2021-02-05T14:59:06Z
dc.date.available2021-02-05T14:59:06Z
dc.identifier.issn13869477
dc.identifier.urihttp://hdl.handle.net/11407/6070
dc.descriptionThe energy states of triangular and hexagonal MoS2 quantum dots are studies with the use of density functional theory, varying the dot size. The system edges are assumed to be passivated with sulfur-hydrogen atoms. In each case, spin-up and spin-down polarizations are investigated via the calculation of the energy gaps, density of states and the interband optical response. The structures are found to be small gap semiconductors. In addition, from the calculated real and imaginary parts of the dielectric function the static index of refraction and the so-called energy loss are evaluated. The effect of the particular dot geometry on the physical quantities under study is specially discussed. It is found that the specific triangular configuration with a total of 42 atoms in the border exhibits a very small energy bandgap associated with the spin-up polarization, which leads to a significant deviation of the value of the related static index of refraction, compared with the remaining structures investigated. From the first-principles calculation it has been also possible to evaluate the spin-polarization and estimate the total magnetic moment, which ranges from ∼2μB to ~14μB, depending on the dot size and geometry. © 2019
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85060556382&doi=10.1016%2fj.physe.2019.01.021&partnerID=40&md5=d0955845a8e48b1a8abf5147245a9e3e
dc.sourcePhysica E: Low-Dimensional Systems and Nanostructures
dc.titleElectronic properties and optical response of triangular and hexagonal MoS2 quantum dots. A DFT approach
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.identifier.doi10.1016/j.physe.2019.01.021
dc.relation.citationvolume109
dc.relation.citationstartpage201
dc.relation.citationendpage208
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationBertel, R., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia, Centro de Investigaciones, Universidad de la Guajira, Riohacha, Colombia
dc.affiliationMora-Ramos, M.E., Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos 62209, Mexico
dc.affiliationCorrea, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.relation.referencesBonaccorso, F., Colombo, L., Yu, G., Stoller, M., Tozzini, V., Ferrari, A.C., Ruoff, R.S., Pellegrini, V., Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage (2015) Science, 347 (6217), p. 1246501
dc.relation.referencesNovoselov, K.S., Mishchenko, A., Carvalho, A., Neto, A.H.C., 2D materials and van der Waals heterostructures (2016) Science, 353 (6298). , aac9439
dc.relation.referencesLiu, Y., Weiss, N.O., Duan, X., Cheng, H.-C., Huang, Y., Duan, X., Van der Waals heterostructures and devices (2016) Nat. Rev. Mater., 1 (9), p. 16042
dc.relation.referencesZhu, Z., Cheng, Y., Schwingenschlögl, U., Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors (2011) Phys. Rev. B, 84, p. 153402
dc.relation.referencesLin, M.-W., Liu, L., Lan, Q., Tan, X., Dhindsa, K.S., Zeng, P., Naik, V.M., Zhou, Z., Mobility enhancement and highly efficient gating of monolayer MoS2 transistors with polymer electrolyte (2012) J. Phys. Appl. Phys., 45 (34), p. 345102
dc.relation.referencesLarentis, S., Fallahazad, B., Tutuc, E., Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers (2012) Appl. Phys. Lett., 101 (22), p. 223104
dc.relation.referencesFang, H., Chuang, S., Chang, T.C., Takei, K., Takahashi, T., Javey, A., High-performance single layered WSe2 p-FETs with chemically doped contacts (2012) Nano Lett., 12 (7), pp. 3788-3792
dc.relation.referencesBao, W., Cai, X., Kim, D., Sridhara, K., Fuhrer, M.S., High mobility ambipolar MoS2 field-effect transistors: substrate and dielectric effects (2013) Appl. Phys. Lett., 102 (4), p. 42104
dc.relation.referencesDu, Y., Neal, A.T., Zhou, H., Peide, D.Y., Transport studies in 2D transition metal dichalcogenides and black phosphorus (2016) J. Phys. Condens. Matter, 28 (26), p. 263002
dc.relation.referencesYin, Z., Li, H., Li, H., Jiang, L., Shi, Y., Sun, Y., Lu, G., Zhang, H., Single-layer MoS2 phototransistors (2011) ACS Nano, 6 (1), pp. 74-80
dc.relation.referencesYoon, Y., Ganapathi, K., Salahuddin, S., How good can monolayer MoS2 transistors be? (2011) Nano Lett., 11 (9), pp. 3768-3773
dc.relation.referencesZeng, H., Dai, J., Yao, W., Xiao, D., Cui, X., Valley polarization in MoS2 monolayers by optical pumping (2012) Nat. Nanotechnol., 7, pp. 490-493
dc.relation.referencesMak, K.F., He, K., Shan, J., Heinz, T.F., Control of valley polarization in monolayer MoS2 by optical helicity (2012) Nat. Nanotechnol., 7, pp. 494-498
dc.relation.referencesWang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides (2012) Nat. Nanotechnol., pp. 699-712
dc.relation.referencesLi, X., Zhu, H., Two-dimensional MoS2: properties, preparation, and applications (2015) J. Materiomics, 1 (1), pp. 33-44
dc.relation.referencesLi, H., Lu, G., Wang, Y., Yin, Z., Cong, C., He, Q., Wang, L., Zhang, H., Mechanical exfoliation and characterization of single-and few-layer nanosheets of WSe2, TaS2, and TaSe2 (2013) Small, 9 (11), pp. 1974-1981
dc.relation.referencesSørensen, S.G., Füchtbauer, H.G., Tuxen, A.K., Walton, A.S., Lauritsen, J.V., Structure and electronic properties of in situ synthesized single-layer MoS2 on a gold surface (2014) ACS Nano, 8 (7), pp. 6788-6796
dc.relation.referencesMahler, B., Hoepfner, V., Liao, K., Ozin, G.A., Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution (2014) J. Am. Chem. Soc., 136 (40), pp. 14121-14127
dc.relation.referencesConley, H.J., Wang, B., Ziegler, J.I., Haglund, R.F., Jr., Pantelides, S.T., Bolotin, K.I., Bandgap engineering of strained monolayer and bilayer MoS2 (2013) Nano Lett., 13 (8), pp. 3626-3630
dc.relation.referencesNguyen, C.V., Hieu, N.N., Duque, C.A., Khoa, D.Q., Hieu, N.V., Tung, L.V., Phuc, H.V., Linear and nonlinear magneto-optical properties of monolayer phosphorene (2017) J. Appl. Phys., 121, p. 037301
dc.relation.referencesHieu, N., Ilyasov, V., Vu, T., Poklonski, N., Phuc, H., Phuong, L., Hoi, B., Nguyen, C., First principles study of optical properties of molybdenum disulfide: from bulk to monolayer (2018) Superlattice. Microst., 115, pp. 10-18
dc.relation.referencesWi, S., Kim, H., Chen, M., Nam, H., Guo, L.J., Meyhofer, E., Liang, X., Enhancement of photovoltaic response in multilayer MoS2 induced by plasma doping (2014) ACS Nano, 8 (5), pp. 5270-5281
dc.relation.referencesNguyen, T.P., Sohn, W., Oh, J.H., Jang, H.W., Kim, S.Y., Size-dependent properties of two-dimensional MoS2 and WS2 (2016) J. Phys. Chem. C, 120 (18), pp. 10078-10085
dc.relation.referencesPark, S.J., Pak, S.W., Qiu, D., Kang, J.H., Kim, E.K., Structural and optical characterization of MoS2 quantum dots defined by thermal annealing (2017) J. Lumin., 183, pp. 62-67
dc.relation.referencesWei, G., Czaplewski, D.A., Lenferink, E.J., Stanev, T.K., Jung, I.W., Stern, N.P., Size-tunable lateral confinement in monolayer semiconductors (2017) Sci. Rep., 7 (1), p. 3324
dc.relation.referencesWang, X., Sun, G., Li, N., Chen, P., Quantum dots derived from two-dimensional materials and their applications for catalysis and energy (2016) Chem. Soc. Rev., 45 (8), pp. 2239-2262
dc.relation.referencesArul, N.S., Nithya, V.D., Molybdenum disulfide quantum dots: synthesis and applications (2016) RSC Adv., 6 (70), pp. 65670-65682
dc.relation.referencesDhanabalan, S.C., Dhanabalan, B., Ponraj, J.S., Bao, Q., Zhang, H., 2D–Materials-Based quantum dots: gateway towards next-generation optical devices (2017) Adv. Opt. Mater., 5 (19), p. 1700257
dc.relation.referencesGan, Z.X., Liu, L.Z., Wu, H.Y., Hao, Y.L., Shan, Y., Wu, X.L., Chu, P.K., Quantum confinement effects across two-dimensional planes in MoS2 quantum dots (2015) Appl. Phys. Lett., 106 (23), p. 233113
dc.relation.referencesKaranikolas, V.D., Paspalakis, E., Localized exciton modes and high quantum efficiency of a quantum emitter close to a MoS2 nanodisk (2017) Phys. Rev. B, 96 (4), p. 041404
dc.relation.referencesLoh, G.C., Pandey, R., Yap, Y.K., Karna, S.P., MoS2 quantum dot: effects of passivation, additional layer, and h-BN substrate on its stability and electronic properties (2015) J. Phys. Chem. C, 119 (3), pp. 1565-1574
dc.relation.referencesWang, Y., Ni, Y., Molybdenum disulfide quantum dots as a photoluminescence sensing platform for 2, 4, 6-trinitrophenol detection (2014) Anal. Chem., 86 (15), pp. 7463-7470
dc.relation.referencesZhu, X., Xiang, J., Li, J., Feng, C., Liu, P., Xiang, B., Tunable photoluminescence of MoS2 quantum dots passivated by different functional groups (2018) J. Colloid Interface Sci., 511, pp. 209-214
dc.relation.referencesPavlović, S., Peeters, F.M., Electronic properties of triangular and hexagonal MoS2 quantum dots (2015) Phys. Rev. B, 91 (15), p. 155410
dc.relation.referencesSegarra, C., Planelles, J., Ulloa, S.E., Edge states in dichalcogenide nanoribbons and triangular quantum dots (2016) Phys. Rev. B, 93 (8), p. 085312
dc.relation.referencesPei, L., Tao, S., Haibo, S., Song, X., Structural stability, electronic and magnetic properties of MoS2 quantum dots based on the first principles (2015) Solid State Commun., 218, pp. 25-30
dc.relation.referencesKośmider, K., González, J.W., Fernández-Rossier, J., Large spin splitting in the conduction band of transition metal dichalcogenide monolayers (2013) Phys. Rev. B, 88, p. 245436
dc.relation.referencesBrooks, M., Burkard, G., Spin-degenerate regimes for single quantum dots in transition metal dichalcogenide monolayers (2017) Phys. Rev. B, 95 (24), p. 245411
dc.relation.referencesSoler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The SIESTA method for ab initio order-N materials simulation (2002) J. Phys. Condens. Matter, 14 (11), pp. 2745-2779
dc.relation.referencesPerdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868
dc.relation.referencesPerdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple [phys. rev. lett. 77, 3865 (1996)] (1997) Phys. Rev. Lett., 78. , 1396–1396
dc.relation.referencesHoat, D., Silva, J., Blas, A., Rámirez, J., Effect of pressure on structural, electronic and optical properties of SrF2: a first principles study (2018) Rev. Mexic. Fisica, 64 (1), pp. 94-100
dc.relation.referencesRidolfi, E., Lewenkopf, C.H., Pereira, V.M., Excitonic structure of the optical conductivity in MoS2 monolayers (2018) Phys. Rev. B, 97, p. 205409
dc.relation.referencesPan, H., Zhang, Y.-W., Edge-dependent structural, electronic and magnetic properties of MoS2 nanoribbons (2012) J. Mater. Chem., 22 (15), p. 7280
dc.relation.referencesGüçlü, A.D., Potasz, P., Hawrylak, P., Zero-energy states of graphene triangular quantum dots in a magnetic field (2013) Phys. Rev. B, 88 (15), p. 155429
dc.relation.referencesGibertini, M., Marzari, N., Emergence of one-dimensional wires of free carriers in transition-metal-dichalcogenide nanostructures (2015) Nano Lett., 15 (9), pp. 6229-6238
dc.relation.referencesBertram, N., Cordes, J., Kim, Y.D., Ganteför, G., Gemming, S., Seifert, G., Nanoplatelets made from MoS2and WS2 (2006) Chem. Phys. Lett., 418 (1-3), pp. 36-39
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem