Show simple item record

dc.creatorVallejo D.P.T.
dc.creatorEl Saddik A.
dc.identifier.isbn9783030278441; 9783030278434
dc.descriptionMood disorders, anxiety, depression, and stress affect people’s quality of life and increase the vulnerability to diseases and infections. Depression, e.g., can carry undesirable consequences such as death. Hence, emotional states detection approaches using wearable technology are gaining interest in the last few years. Emerging wearable devices allow monitoring different physiological signals in order to extract useful information about people’s health status and provide feedback about their health condition. Wearable applications include e.g., patient monitoring, stress detection, fitness monitoring, wellness monitoring, and assisted living for elderly people, to name a few. This increased interests in wearable applications have allowed the development of new approaches to assist people in everyday activities and emergencies that can be incorporated into the smart city concept. Accurate emotional state detection approaches will allow an effective assistance, thus improving people’s quality of life and well-being. With these issues in mind, this chapter discusses existing emotional states’ approaches using machine and/or deep learning techniques, the most commonly used physiological signals in these approaches, existing physiological databases for emotion recognition, and highlights challenges and future research directions in this field. © Springer Nature Switzerland AG 2020.
dc.publisherSpringer International Publishing
dc.sourceConnected Health in Smart Cities
dc.subjectAffective recognitionspa
dc.subjectDeep learningspa
dc.subjectEmotional statesspa
dc.subjectMachine learningspa
dc.subjectPhysiological signalsspa
dc.subjectQuality of lifespa
dc.subjectSmart cityspa
dc.titleEmotional states detection approaches based on physiological signals for healthcare applications: A review
dc.typeBook Chaptereng
dc.publisher.programIngeniería de Telecomunicacionesspa
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationVallejo, D.P.T., Universidad de Medellin, Medellin, Colombia
dc.affiliationEl Saddik, A., Multimedia Communications Research Laboratory, University of Ottawa, Ottawa, ON, Canada
dc.relation.referencesTaleb, T., Bottazzi, D., Nasser, N., A novel middleware solution to improve ubiquitous healthcare systems aided by affective information (2010) IEEE Trans. Inf. Technol. Biomed., 14 (2), pp. 335-349
dc.relation.referencesTobón, D., Falk, T., Maier, M., Context awareness in WBANs: A survey on medical and nonmedical applications (2013) IEEE Wirel. Commun., 20 (4), pp. 30-37
dc.relation.referencesBellavista, P., Bottazzi, D., Corradi, A., Montanari, R., Challenges, opportunities and solutions for ubiquitous eldercare (2007) Web Mobile-Based Applications for Healthcare Management, pp. 142-165. , in, IGI Global
dc.relation.referencesArnrich, B., Setz, C., La Marca, R., Tröster, G., Ehlert, U., What does your chair know about your stress level? IEEE Trans (2010) Inf. Technol. Biomed., 14 (2), pp. 207-214
dc.relation.referencesBennett, T.R., Wu, J., Kehtarnavaz, N., Jafari, R., Inertial measurement unit-based wearable computers for assisted living applications: A signal processing perspective (2016) IEEE Signal Process. Mag., 33 (2), pp. 28-35
dc.relation.referencesGreene, S., Thapliyal, H., Caban-Holt, A., A survey of affective computing for stress detection:Evaluating technologies in stress detection for better health (2016) IEEE Consum. Electr. Mag., 5 (4), pp. 44-56
dc.relation.referencesSantos, O.C., Uria-Rivas, R., Rodriguez-Sanchez, M., Boticario, J.G., An open sensing and acting platform for context-aware affective support in ambient intelligent educational settings (2016) IEEE Sensors J., 16 (10), pp. 3865-3874
dc.relation.referencesRebolledo-Mendez, G., Reyes, A., Paszkowicz, S., Domingo, M.C., Skrypchuk, L., Developing a body sensor network to detect emotions during driving (2014) IEEE Trans. Intell. Transp. Syst., 15 (4), pp. 1850-1854
dc.relation.referencesZeng, Z., Pantic, M., Roisman, G.I., Huang, T.S., A survey of affect recognition methods: Audio, visual, and spontaneous expressions (2009) IEEE Trans. Pattern Anal. Mach. Intell., 31 (1), pp. 39-58
dc.relation.referencesHariharan, A., Adam, M.T.P., Blended emotion detection for decision support (2015) IEEE Trans. Hum. Mac. Syst., 45 (4), pp. 510-517
dc.relation.referencesAl Osman, H., Falk, T.H., Multimodal affect recognition: Current approaches and challenges (2017) Emotion and Attention Recognition Based on Biological Signals and Images, pp. 59-86. , in, InTech
dc.relation.referencesHogg, M.A., Abrams, D., Social cognition and attitudes (2007) Psychology, pp. 684-721. , in, 3rd edn. ed. by G.N. Martin, N.R. Carlson, W. Buskist (Pearson Education Limited
dc.relation.referencesEkman, P., About brows: Emotional and conversational signals (1979) Hum. Ethol., 163-202
dc.relation.referencesEkman, P., Friesen, W.V., Ellsworth, P., (2013) Emotion in the Human Face: Guidelines for Research and an Integration of Findings, , Elsevier
dc.relation.referencesGo, H.-J., Kwak, K.-C., Lee, D.-J., Chun, M.-G., Emotion recognition from the facial image and speech signal (2003) SICE 2003 Annual Conference, , in
dc.relation.referencesSander, D., Grandjean, D., Scherer, K.R., A systems approach to appraisal mechanisms in emotion (2005) Neural Netw., 18 (4), pp. 317-352
dc.relation.referencesKim, J., André, E., Emotion recognition based on physiological changes in music listening (2008) IEEE Trans. Pattern Anal. Mach. Intell., 30 (12), pp. 2067-2083
dc.relation.referencesSchlosberg, H., Three dimensions of emotion (1954) Psychol. Rev., 61 (2), pp. 81-88
dc.relation.referencesFredrickson, B.L., Levenson, R.W., Positive emotions speed recovery from the cardiovascular sequelae of negative emotions (1998) Cognit. Emot., 12 (2), pp. 191-220
dc.relation.referencesGreco, A., Valenza, G., Citi, L., Scilingo, E.P., Arousal and valence recognition of affective sounds based on electrodermal activity (2017) IEEE Sensors J., 17 (3), pp. 716-725
dc.relation.referencesValenza, G., Citi, L., Gentili, C., Lanata, A., Scilingo, E.P., Barbieri, R., Characterization of depressive states in bipolar patients using wearable textile technology and instantaneous heart rate variability assessment (2015) IEEE J. Biomed. Health Inform., 19 (1), pp. 263-274
dc.relation.referencesRessel, J., A circumplex model of affect (1980) J. Pers. Soc. Psychol., 39, pp. 1161-1178
dc.relation.referencesRavi, D., Wong, C., Deligianni, F., Berthelot, M., Andreu-Perez, J., Lo, B., Yang, G.-Z., Deep learning for health informatics (2017) IEEE J. Biomed. Health Inform., 21 (1), pp. 4-21
dc.relation.referencesCacioppo, J.T., Introduction: Emotion and health (2003) Handbook of Affective Sciences, pp. 1047-1052. , in, Oxford University Press, New York
dc.relation.referencesHealey, J.A., Picard, R.W., Detecting stress during real-world driving tasks using physiological sensors (2005) IEEE Trans. Intell. Transp. Syst., 6 (2), pp. 156-166
dc.relation.referencesPicard, R.W., Affective medicine: Technology with emotional intelligence (2002) Future of Health Technology, pp. 69-84. , in, IOS Press
dc.relation.referencesGravina, R., Fortino, G., Automatic methods for the detection of accelerative cardiac defense response (2016) IEEE Trans. Affect. Comput., 7 (3), pp. 286-298
dc.relation.referencesMurugappan, M., Rizon, M., Nagarajan, R., Yaacob, S., Zunaidi, I., Hazry, D., EEG feature extraction for classifying emotions using FCM and FKM (2007) Int. J. Comp. Commun., 1 (2), pp. 21-25
dc.relation.referencesLin, Y.-P., Wang, C.-H., Jung, T.-P., Wu, T.-L., Jeng, S.-K., Duann, J.-R., Chen, J.-H., EEG-based emotion recognition in music listening (2010) IEEE Trans. Biomed. Eng., 57 (7), pp. 1798-1806
dc.relation.referencesHarvard Health Publications, ,, Harvard medical school, 18 March 2016. [Online], Accessed 2 Aug 2017
dc.relation.referencesLincoln, D., Correlation of unit activity in the hypothalamus with EEG patterns associated with the sleep cycle (1969) Exp. Neurol., 24 (1), pp. 1-18
dc.relation.referencesDavidson, R.J., Schwartz, G.E., Saron, C., Bennett, J., Goleman, D., (1979) Frontal Versus Parietal EEG Asymmetry During Positive and Negative Affect, , Cambridge University Press, New York
dc.relation.referencesChowdhury, R.H., Reaz, M.B., Ali, M.A.B.M., Bakar, A.A., Chellappan, K., Chang, T.G., Surface electromyography signal processing and classification techniques (2013) Sensors, 13 (9), pp. 12431-12466
dc.relation.referencesNakasone, A., Prendinger, H., Ishizuka, M., Emotion recognition from electromyography and skin conductance (2005) Proceedings of the 5th International Workshop on Biosignal Interpretation, , in
dc.relation.referencesAppelhans, B.M., Luecken, L.J., Heart rate variability as an index of regulated emotional responding (2006) Rev. Gen. Psychol., 10 (3), pp. 229-240
dc.relation.referencesSingh, R.B., Cornélissen, G., Weydahl, A., Schwartzkopff, O., Katinas, G., Otsuka, K., Watanabe, Y., Ichimaru, Y., Circadian heart rate and blood pressure variability considered for research and patient care (2003) Int. J. Cardiol., 87 (1), pp. 9-28
dc.relation.referencesKemp, A.H., Brunoni, A.R., Santos, I.S., Nunes, M.A., Dantas, E.M., Carvalho de Figueiredo, R., Pereira, A.C., Andreao, R.V., Effects of depression, anxiety, comorbidity, and antidepressants on resting-state heart rate and its variability: An ELSA-Brasil cohort baseline study (2014) Am. J. Psychiatr., 171 (12), pp. 1328-1334
dc.relation.referencesLevenson, R.W., Ekman, P., Friesen, W.V., Voluntary facial action generates emotion-specific autonomic nervous system activity (1990) Psychophysiology, 27 (4), pp. 363-384
dc.relation.referencesKreibig, S.D., Autonomic nervous system activity in emotion: A review (2010) Biol. Psychol., 84 (3), pp. 394-421
dc.relation.referencesAl Osman, H., Dong, H., El Saddik, A., Ubiquitous biofeedback serious game for stress management (2016) IEEE Access, 4, pp. 1274-1286
dc.relation.referencesvan der Zwaag, M.D., Janssen, J.H., Westerink, J.H., Directing physiology and mood through music: Validation of an affectivemusic player (2013) IEEE Trans. Affect. Comput., 4 (1), pp. 57-68
dc.relation.referencesKhalfa, S., Isabelle, P., Jean-Pierre, B., Manon, R., Event-related skin conductance responses to musical emotions in humans (2002) Neurosci. Lett., 328 (2), pp. 145-149
dc.relation.referencesPicard, R.W., Fedor, S., Ayzenberg, Y., Multiple arousal theory and daily-life electrodermal activity asymmetry (2016) Emot. Rev., 8 (1), pp. 62-75
dc.relation.referencesPoh, M.-Z., Swenson, N.C., Picard, R.W., A wearable sensor for unobtrusive, long-term assessment of electrodermal activity (2010) IEEE Trans. Biomed. Eng., 57 (5), pp. 1243-1252
dc.relation.referencesFukushima, H., Kawanaka, H., Bhuiyan, M.S., Oguri, K., Estimating heart rate using wristtype photoplethysmography and acceleration sensor while running (2012) Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), , in
dc.relation.referencesAlian, A.A., Shelley, K.H., Photoplethysmography (2014) Best Pract. Res. Clin. Anaesthesiol., 28, pp. 395-406
dc.relation.referencesPeter, L., Noury, N., Cerny, M., A review of methods for non-invasive and continuous blood pressure monitoring: Pulse transit time method is promising? (2014) Irbm, 35 (5), pp. 271-282
dc.relation.referencesPadasdao, B., Shahhaidar, E., Stickley, C., Boric-Lubecke, O., Electromagnetic biosensing of respiratory rate (2013) IEEE Sensors J., 13 (11), pp. 4204-4211
dc.relation.referencesShahhaidar, E., Padasdao, B., Romine, R., Boric-Lubecke, O., Piezoelectric and electromagnetic respiratory effort energy harvesters (2013) 35th Annual International Conference of the IEEE EMBS, , in, Osaka, Japan
dc.relation.referencesWientjes, C.J., Respiration in psychophysiology: Methods and applications (1992) Biol. Psychol., 34 (2), pp. 179-203
dc.relation.referencesJohnson, J., Bilateral finger temperature and the low of initial value (1978) Psychophysiology, 24, pp. 666-669
dc.relation.referencesVos, P., De Cock, P., Munde, V., Petry, K., Van Den Noortgate, W., Maes, B., The tell-tale: What do heart rate
dc.relation.referencesskin temperature and skin conductance reveal about emotions of people with severe and profound intellectual disabilities? Res (2012) Dev. Disabil., 33 (4), pp. 1117-1127
dc.relation.referencesGreco, A., Valenza, G., Lanata, A., Rota, G., Scilingo, E.P., Electrodermal activity in bipolar patients during affective elicitation (2014) IEEE J. Biomed. Health Inform., 18 (6), pp. 1865-1873
dc.relation.referencesKumar, M., Arndt, D., Kreuzfeld, S., Thurow, K., Stoll, N., Stoll, R., Fuzzy techniques for subjective workload-score modeling under uncertainties (2008) IEEE Trans. Syst. Man Cybern. B Cybern., 38 (6), pp. 1449-1464
dc.relation.referencesNardelli, M., Valenza, G., Greco, A., Lanata, A., Scilingo, E.P., Recognizing emotions induced by affective sounds through heart rate variability (2015) IEEE Trans. Affect. Comput., 6 (4), pp. 385-394
dc.relation.referencesJang, E.-H., Park, B.-J., Kim, S.-H., Sohn, J.-H., Emotion classification based on physiological signals induced by negative emotions: Discrimination of negative emotions by machine learning algorithm (2012) 9th IEEE International Conference on Networking, Sensing and Control (ICNSC), , in
dc.relation.referencesMartinez, H.P., Bengio, Y., Yannakakis, G.N., Learning deep physiological models of affect (2013) IEEE Comput. Intell. Mag., 8 (2), pp. 20-33
dc.relation.referencesAlZoubi, O., D’Mello, S.K., Calvo, R.A., Detecting naturalistic expressions of nonbasic affect using physiological signals (2012) IEEE Trans. Affect. Comput., 3 (3), pp. 298-310
dc.relation.referencesChanel, G., Rebetez, C., Bétrancourt, M., Pun, T., Emotion assessment from physiological signals for adaptation of game difficulty (2011) IEEE Trans. Syst.Man Cybern. A Syst. Humans, 41 (6), pp. 1052-1063
dc.relation.referencesWen, W., Liu, G., Cheng, N., Wei, J., Shangguan, P., Huang, W., Emotion recognition based on multi-variant correlation of physiological signals (2014) IEEE Trans. Affect. Comput., 5 (2), pp. 126-140
dc.relation.referencesSwangnetr, M., Kaber, D.B., Emotional state classification in patient-robot interaction using wavelet analysis and statistics-based feature selection (2013) IEEE Trans. Hum. Mac. Syst., 43 (1), pp. 63-75
dc.relation.referencesJenke, R., Peer, A., Buss, M., Feature extraction and selection for emotion recognition from EEG (2014) IEEE Trans. Affect. Comput., 5 (3), pp. 327-339
dc.relation.referencesFrantzidis, C.A., Bratsas, C., Klados, M.A., Konstantinidis, E., Lithari, C.D., Vivas, A.B., Papadelis, C.L., Bamidis, P.D., On the classification of emotional biosignals evoked while viewing affective pictures: An integrated data-mining-based approach for healthcare applications (2010) IEEE Trans. Inf. Technol. Biomed., 14 (2), pp. 309-318
dc.relation.referencesFleureau, J., Guillotel, P., Huynh-Thu, Q., Physiological-based affect event detector for entertainment video applications (2012) IEEE Trans. Affect. Comput., 3 (3), pp. 379-385
dc.relation.referencesWu, C.-K., Chung, P.-C., Wang, C.-J., Representative segment-based emotion analysis and classification with automatic respiration signal segmentation (2012) IEEE Trans. Affect. Comput., 3 (4), pp. 482-495
dc.relation.referencesSakr, G.E., Elhajj, I.H., Huijer, H.A.-S., Support vector machines to define and detect agitation transition (2010) IEEE Trans. Affect. Comput., 1 (2), pp. 98-108
dc.relation.referencesValenza, G., Lanata, A., Scilingo, E.P., The role of nonlinear dynamics in affective valence and arousal recognition (2012) IEEE Trans. Affect. Comput., 3 (2), pp. 237-249
dc.relation.referencesHadjidimitriou, S.K., Hadjileontiadis, L.J., Toward an EEG-based recognition of music liking using time-frequency analysis (2012) IEEE Trans. Biomed. Eng., 59 (12), pp. 3498-3510
dc.relation.referencesWalter, S., Kim, J., Hrabal, D., Crawcour, S.C., Kessler, H., Traue, H.C., Transsituational individual-specific biopsychological classification of emotions (2013) IEEE Trans. Syst.Man Cybern. Syst., 43 (4), pp. 988-995
dc.relation.referencesWhat is GSR (Galvanic Skin Response) and How Does It Work?, ,, 12 May 2015. [Online], Accessed 2 Aug 2017
dc.relation.referencesKoelstra, S., Muhl, C., Soleymani, M., Lee, J.-S., Yazdani, A., Ebrahimi, T., Pun, T., Patras, I., Deap: A database for emotion analysis
dc.relation.referencesusing physiological signals (2012) IEEE Trans. Affect. Comput., 3 (1), pp. 18-31
dc.relation.referencesSoleymani, M., Lichtenauer, J., Pun, T., Pantic, M., A multimodal database for affect recognition and implicit tagging (2012) IEEE Trans. Affect. Comput., 3 (1), pp. 42-55
dc.relation.referencesPicard, R.W., Vyzas, E., Healey, J., Toward machine emotional intelligence: Analysis of affective physiological state (2001) IEEE Trans. Pattern Anal. Mach. Intell., 23 (10), pp. 1175-1191
dc.relation.referencesDouglas-Cowie, E., Cowie, R., Sneddon, I., Cox, C., Lowry, O., McRorie, M., Martin, J.-C., Batliner, A., The HUMAINE database: Addressing the collection and annotation of naturalistic and induced emotional data (2007) Affective Computing and Intelligent Interaction, pp. 488-500. , in, Springer, Berlin
dc.relation.referencesRingeval, F., Sonderegger, A., Sauer, J., Lalanne, D., Introducing the RECOLA multimodal corpus of remote collaborative and affective interactions (2013) 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), , in, Shanghai, China
dc.relation.referencesZhang, L., Walter, S., Ma, X., BioVid Emo DB”: A multimodal database for emotion analyses validated by subjective ratings (2016) IEEE Symposium Series on Computational Intelligence (SSCI), , in, Athens, Greece
dc.relation.referencesMultimedia and Human Understanding Group (MHUG), ,, [Online], Accessed 10 Aug 2017
dc.relation.referencesChanel, G., Kronegg, J., Grandjean, D., Pun, T., Emotion assessment: Arousal evaluation using EEG’s and peripheral physiological signals (2006) Multimedia Content Representation, Classification and Security, pp. 530-537. , in
dc.relation.referencesAfzal, S., Robinson, P., Natural affect data: Collection and annotation (2011) New Perspectives on Affect and Learning Technologies, pp. 55-70. , in, Springer
dc.relation.referencesMartínez, H.P., Yannakakis, G.N., Mining multimodal sequential patterns: A case study on affect detection (2011) Proceedings of the 13th international conference on multimodal interfaces
dc.relation.referencesAffective Computing, ,, MIT [Online], Accessed 5 June 2017
dc.relation.referencesHui, T., Simon, S.R., Daniel, D.S., Major requirements for building Smart Homes in Smart Cities based on Internet of Things technologies (2017) Futur. Gener. Comput. Syst., 76, pp. 358-369
dc.relation.referencesAcharya, U.R., Joseph, K.P., Kannathal, N., Lim, C.M., Suri, J.S., Heart rate variability: A review (2006) Med. Biol. Eng. Comput., 44 (12), pp. 1031-1051

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record