Show simple item record

dc.creatorTobón C.
dc.creatorSaiz J.
dc.date2019
dc.date.accessioned2021-02-05T14:59:10Z
dc.date.available2021-02-05T14:59:10Z
dc.identifier.issn375497
dc.identifier.urihttp://hdl.handle.net/11407/6076
dc.descriptionAtrial fibrillation (AF) is the most common tachyarrhythmia. It has been demonstrated that extra-stimuli could act as triggers for AF. In many patients it is possible that multiple ectopic foci co-exist, and their interactions may generate complex conduction patterns. Our goal is to investigate the influence of the focus frequency, conduction velocity, and anisotropy on fibrillatory pattern generation during the interaction of multiple ectopic activities under electrical remodeling conditions. Our results support the broadly accepted theory that ectopic activity acting in remodeled tissue is an initiator of reentrant mechanisms. These reentrant circuits can generate fibrillatory activity when interacting with other rapid ectopic foci and under the following conditions: high ectopic focus frequency, slow conduction velocity, and anisotropic tissue. Analyses of electrogram polymorphism allow determination of which zones of tissue permit one to know in which zone of tissue unstable activity exists. Our results give useful insights into the electrophysiological parameters that determine the initiation and maintenance of fibrillatory conduction by two ectopic foci interaction in a simulated two-dimensional sheet of human atrial cells, under chronic AF conditions. © The Author(s) 2018.
dc.language.isoeng
dc.publisherSAGE Publications Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85049863457&doi=10.1177%2f0037549718782401&partnerID=40&md5=9f33b0ab12b0fd3f7d6c0929d31d6a05
dc.sourceSimulation
dc.subjectectopic activityspa
dc.subjectfibrillatory conductionspa
dc.subjectTwo-dimensional atrial modelspa
dc.titleFibrillatory conduction in a simulated two-dimensional model of human atrial tissue: effect of the interaction of two ectopic foci
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.identifier.doi10.1177/0037549718782401
dc.subject.keywordAnisotropyeng
dc.subject.keywordElectrophysiologyeng
dc.subject.keywordTissueeng
dc.subject.keywordAtrial fibrillationeng
dc.subject.keywordAtrial modelseng
dc.subject.keywordConduction patternseng
dc.subject.keywordConduction velocityeng
dc.subject.keywordElectrical remodelingeng
dc.subject.keywordFibrillatory conductioneng
dc.subject.keywordPattern Generationeng
dc.subject.keywordTwo dimensional modeleng
dc.subject.keywordTissue engineeringeng
dc.relation.citationvolume95
dc.relation.citationissue7
dc.relation.citationstartpage577
dc.relation.citationendpage591
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationTobón, C., MATBIOM, Universidad de Medellín, Colombia
dc.affiliationSaiz, J., CI2B, Universitat Politècnica de Valencia, Spain
dc.relation.referencesFuster, V., Rydén, L.E., Cannom, D.S., ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation (2006) Circulation, 114, pp. 700-752
dc.relation.referencesStewart, S., Hart, C.L., Hole, D.J., A population-based study of the long-term risks associated with atrial fibrillation: 20-year follow-up of the Renfrew/Paisley study (2002) Am J Med, 113, pp. 359-364
dc.relation.referencesWolf, P.A., Abbott, R.D., Kannel, W.B., Atrial fibrillation as an independent risk factor for stroke: the Framingham Study (1991) Stroke, 22, pp. 983-988
dc.relation.referencesKrahn, A.D., Manfreda, J., Tate, R.B., The natural history of atrial fibrillation: incidence, risk factors, and prognosis in the manitoba follow-up study (1995) Am J Med, 98, pp. 476-484
dc.relation.referencesZoni-Berisso, M., Lercari, F., Carazza, T., Epidemiology of atrial fibrillation: European perspective (2014) Clin Epidemiol, 6, pp. 213-220
dc.relation.referencesCorradi, D., Atrial fibrillation from the pathologist’s perspective (2014) Cardiovasc Pathol, pp. 71-84. , 23(2
dc.relation.referencesKishore, A., Vail, A., Majid, A., Detection of atrial fibrillation after ischemic stroke or transient ischemic attack:aA systematic review and meta-analysis (2014) Stroke, pp. 520-526. , 45
dc.relation.referencesKnecht, S., Oelschläger, C., Duning, T., Atrial fibrillation in stroke-free patients is associated with memory impairment and hippocampal atrophy (2008) Eur Heart J, 29, pp. 2125-2132
dc.relation.referencesThrall, G., Lane, D., Carroll, D., Quality of life in patients with atrial fibrillation: a systematic review (2006) Am J Med, 119. , 448.e1–19
dc.relation.referencesSteinberg, B.A., Kim, S., Fonarow, G.C., Drivers of hospitalization for patients with atrial fibrillation: results from the Outcomes Registry for Better Informed Treatment of Atrial Fibrillation (ORBIT-AF) (2014) Am Heart J, 167, pp. 735-742
dc.relation.referencesKirchhof, P., Benussi, S., Kotecha, D., 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS (2016) Europace, pp. 1609-1678. , 18(11
dc.relation.referencesHaissaguerre, M., Jais, P., Shah, D.C., Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins (1998) N Engl J Med, 339, pp. 659-666
dc.relation.referencesChen, S.A., Hsieh, M.H., Tai, C.T., Initiation of atrial fibrillation by ectopic beats originating from the pulmonary veins: electrophysiological characteristics, pharmacological responses, and effects of radiofrequency ablation (1999) Circulation, 100, pp. 1879-1886
dc.relation.referencesChen, Y.J., Chen, S.A., Chang, M.S., Arrhythmogenic activity of cardiac muscle in pulmonary veins of the dog: Implication for the genesis of atrial fibrillation (2000) Cardiovasc Res, 48, pp. 265-273
dc.relation.referencesNattel, S., Burstein, B., Dobrev, D., Atrial remodeling and atrial fibrillation: mechanisms and implications (2008) Circulat Arrhyth Electrophysiol, pp. 62-73. , 1
dc.relation.referencesde Vos, C.B., Pisters, R., Nieuwlaat, R., Progression from paroxysmal to persistent atrial fibrillation. Clinical correlates and prognosis (2010) J Am Coll Cardiol, 55, pp. 725-731
dc.relation.referencesDe Groot, N.M.S., Schalij, M.J., Fragmented, long-duration, low-amplitude electrograms characterize the origin of focal atrial tachycardia (2006) J Cardiovasc Electrophysiol, 17, pp. 1086-1092
dc.relation.referencesPison, L., Tilz, R., Jalife, J., Pulmonary vein triggers, focal sources, rotors and atrial cardiomyopathy: Implications for the choice of the most effective ablation therapy (2016) J Intern Med, 279, pp. 449-456
dc.relation.referencesSanders, P., Berenfeld, O., Hocini, M., Spectral analysis identifies sites of high-frequency activity maintaining atrial fibrillation in humans (2005) Circulation, 112, pp. 789-797
dc.relation.referencesHansen, B.J., Zhao, J., Csepe, T.A., Atrial fibrillation driven by micro-anatomic intramural re-entry revealed by simultaneous sub-epicardial and sub-endocardial optical mapping in explanted human hearts (2015) Eur Heart J, 36, pp. 2390-2401
dc.relation.referencesNarayan, S.M., Krummen, D.E., Shivkumar, K., Treatment of atrial fibrillation by the ablation of localized sources (2012) J Am Coll Cardiol, 60, pp. 628-636
dc.relation.referencesMandapati, R., Skanes, A., Chen, J., Stable microreentrant sources as a mechanism of atrial fibrillation in the isolated sheep heart (2000) Circulation, 101, pp. 194-199
dc.relation.referencesMansour, M., Mandapati, R., Berenfeld, O., Left-to-right gradient of atrial frequencies during acute atrial fibrillation in the isolated sheep heart (2001) Circulation, 103, pp. 2631-2636
dc.relation.referencesJalife, J., Rotors and spiral waves in atrial fibrillation (2003) J Cardiovasc Electrophysiol, 14, pp. 776-780
dc.relation.referencesReumann, M., Bohnert, J., Osswald, B., Multiple wavelets, rotors, and snakes in atrial fibrillation-a computer simulation study (2007) J Electrocardiol, 40, pp. 328-334
dc.relation.referencesUgarte, J., Orozco-Duque, A., Tobón, C., Dynamic approximate entropy electroanatomic maps detect rotors in a simulated atrial fibrillation model (2014) PLoS One, 9, p. e114577
dc.relation.referencesArora, R., Verheule, S., Scott, L., Arrhythmogenic substrate of the pulmonary veins assessed by high-resolution optical mapping (2003) Circulation, 107, pp. 1816-1821
dc.relation.referencesKumagai, K., Gondo, N., Matsumoto, N., New technique for simultaneous catheter mapping of pulmonary veins for catheter ablation in focal atrial fibrillation (2000) Cardiology, 94, pp. 233-238
dc.relation.referencesNanthakumar, K., Lau, Y.R., Plumb, V.J., Electrophysiological findings in adolescents with atrial fibrillation who have structurally normal hearts (2004) Circulation, 110, pp. 117-123
dc.relation.referencesLin, W.S., Tai, C.T., Hsieh, M.H., Catheter ablation of paroxysmal atrial fibrillation initiated by non-pulmonary vein ectopy (2003) Circulation, 107, pp. 3176-3183
dc.relation.referencesLee, S.H., Chen, S.A., Tai, C.T., Predictors of non-pulmonary vein ectopic beats initiating paroxysmal atrial fibrillation - implication for catheter ablation (2007) Acta Cardiologica Sinica, pp. 13-19. , 46(6
dc.relation.referencesBosch, R.F., Zeng, X., Grammer, J.B., Ionic mechanisms of electrical remodeling in human atrial fibrillation (1999) Cardiovasc Res, 44, pp. 121-131
dc.relation.referencesWorkman, A.J., Kane, K.A., Rankin, A.C., The contribution of ionic currents to changes in refractoriness of human atrial myocytes associated with chronic atrial fibrillation (2001) Cardiovasc Res, 52, pp. 226-235
dc.relation.referencesWijffels, M.C., Kirchhof, C.J., Dorland, R., Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats (1995) Circulation, 92, pp. 1954-1968
dc.relation.referencesSchotten, U., Verheule, S., Kirchhof, P., Pathophysiological mechanisms of atrial fibrillation: a translational appraisal (2011) Physiol Rev, 91, pp. 265-325
dc.relation.referencesVeenhuyzen, G.D., Simpson, C.S., Abdollah, H., Atrial fibrillation (2004) Can Med Assoc J, 171, pp. 755-760
dc.relation.referencesWeiss, J.N., Qu, Z., Shivkumar, K., Ablating atrial fibrillation: a translational science perspective for clinicians (2016) Heart Rhythm, 13, pp. 1868-1877
dc.relation.referencesJais, P., Haissaguerre, M., Shah, D.C., A focal source of atrial fibrillation treated by discrete radiofrequency ablation (1997) Circulation, pp. 572-576. , 95
dc.relation.referencesBelhassen, B., Glick, A., Viskin, S., Reentry in a pulmonary vein as a possible mechanism of focal atrial fibrillation (2004) J Cardiovasc Electrophysiol, 15, pp. 824-828
dc.relation.referencesWilders, R., Wagner, M.B., Golod, D.A., Effects of anisotropy on the development of cardiac arrhythmias associated with focal activity (2000) Pflugers Arch Eur J Physiol, 441, pp. 301-312
dc.relation.referencesZhao, J., Butters, T.D., Zhang, H., An image-based model of atrial muscular architecture effects of structural anisotropy on electrical activation (2012) Circulat Arrhythmia Electrophysiol, 5, pp. 361-370
dc.relation.referencesAslanidi, O.V., Boyett, M.R., Dobrzynski, H., Mechanisms of transition from normal to reentrant electrical activity in a model of rabbit atrial tissue: interaction of tissue heterogeneity and anisotropy (2009) Biophys J, 96, pp. 798-817
dc.relation.referencesNygren, A., Fiset, C., Firek, L., Mathematical model of an adult human atrial cell: the role of K+ currents in repolarization (1998) Circ Res, 82, pp. 63-81
dc.relation.referencesHo, S.Y., Sanchez-Quintana, D., Cabrera, J.A., Anatomy of the left atrium: implications for radiofrequency ablation of atrial fibrillation (1999) J Cardiovasc Electrophysiol, 10, pp. 1525-1533
dc.relation.referencesTobón, C., Orozco-Duque, A., Ugarte, J., Complexity of atrial fibrillation electrograms through nonlinear signal analysis: in silico approach (2017) Interpreting cardiac electrograms - from skin to endocardium, pp. 137-168. , Michael K.A., (ed), London, InTech, In:, (ed
dc.relation.referencesTakahashi, Y., Sanders, P., Jais, P., Organization of frequency spectra of atrial fibrillation: relevance to radiofrequency catheter ablation (2006) J Cardiovasc Electrophysiol, 17, pp. 382-388
dc.relation.referencesTobón, C., Rodríguez, J.F., Ferrero, J.M., Jr., Dominant frequency and organization index maps in a realistic three-dimensional computational model of atrial fibrillation (2012) Europace, 14. , v25-v32
dc.relation.referencesEverett, T.H., Wilson, E.E., Verheule, S., Structural atrial remodeling alters the substrate and spatiotemporal organization of atrial fibrillation: a comparison in canine models of structural and electrical atrial remodeling (2006) Am J Physiol Heart Circ Physiol, 291. , H2911–23
dc.relation.referencesJais, P., Hocini, M., Macle, L., Distinctive electrophysiological properties of pulmonary veins in patients with atrial fibrillation (2002) Circulation, 106, pp. 2479-2485
dc.relation.referencesIkeda, T., Yashima, M., Uchida, T., Attachment of meandering reentrant wave fronts to anatomic obstacles in the atrium. Role of the obstacle size (1997) Circ Res, 81, pp. 753-764
dc.relation.referencesWieser, L., Nowak, C.N., Tilg, B., Mother rotor anchoring in branching tissue with heterogeneous membrane properties (2008) Biomed Tech, 53, pp. 25-35
dc.relation.referencesUno, K., Kumagai, K., Khrestian, C.M., New insights regarding the atrial flutter reentrant circuit: studies in the canine sterile pericarditis model (1999) Circulation, 100, pp. 1354-1360
dc.relation.referencesRyu, K., Shroff, S.C., Sahadevan, J., Mapping of atrial activation during sustained atrial fibrillation in dogs with rapid ventricular pacing induced heart failure: evidence for a role of driver regions (2005) J Cardiovasc Electrophysiol, 16, pp. 1348-1358
dc.relation.referencesVigmond, E.J., Tsoi, V., Kuo, S., The effect of vagally induced dispersion of action potential duration on atrial arrhythmogenesis (2004) Heart Rhythm, 1, pp. 334-344
dc.relation.referencesBorek, B., Shajahan, T.K., Gabriels, J., Pacemaker interactions induce reentrant wave dynamics in engineered cardiac culture (2012) Chaos, 22. , 033132
dc.relation.referencesZhang, H., Liu, J.H., Garratt, C.J., Competitive interactions between ectopic foci and reentry in virtual human atrium (2005) Computers in cardiology, 32, pp. 73-76
dc.relation.referencesGong, Y., Xie, F., Stein, K.M., Mechanism underlying initiation of paroxysmal atrial flutter/atrial fibrillation by ectopic foci: a simulation study (2007) Circulation, 115, pp. 2094-2102
dc.relation.referencesKonings, K.T., Smeets, J.L., Penn, O.C., Configuration of unipolar atrial electrograms during electrically induced atrial fibrillation in humans (1997) Circulation, 95, pp. 1231-1241
dc.relation.referencesRyu, K., Sahadevan, J., Khrestian, C.M., Use of fast fourier transform analysis of atrial electrograms for rapid characterization of atrial activation-implications for delineating possible mechanisms of atrial tachyarrhythmias (2006) J Cardiovasc Electrophysiol, 17, pp. 198-206
dc.relation.referencesSkanes, A.C., Mandapati, R., Berenfeld, O., Spatiotemporal periodicity during atrial fibrillation in the isolated sheep heart (1998) Circulation, 98, pp. 1236-1248
dc.relation.referencesHaissaguerre, M., Sanders, P., Hocini, M., Pulmonary veins in the substrate for atrial fibrillation: the “venous wave” hypothesis (2004) J Am Coll Cardiol, 43, pp. 2290-2292
dc.relation.referencesLin, L.J., Billette, J., Khalife, K., Characteristics, circuit, mechanism, and ablation of reentry in the rabbit atrioventricular node (1999) J Cardiovasc Electrophysiol, 10, pp. 954-964
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record