Mostrar el registro sencillo del ítem

dc.creatorBadache M.
dc.creatorAidoun Z.
dc.creatorEslami-Nejad P.
dc.creatorBlessent D.
dc.date2019
dc.date.accessioned2021-02-05T14:59:15Z
dc.date.available2021-02-05T14:59:15Z
dc.identifier.issn24115134
dc.identifier.urihttp://hdl.handle.net/11407/6082
dc.descriptionCompared to conventional ground heat exchangers that require a separate pump or other mechanical devices to circulate the heat transfer fluid, ground coupled thermosiphons or naturally circulating ground heat exchangers do not require additional equipment for fluid circulation in the loop. This might lead to a better overall efficiency and much simpler operation. This paper provides a review of the current published literature on the different types of existing ground coupled thermosiphons for use in applications requiring moderate and low temperatures. Effort has been focused on their classification according to type, configurations, major designs, and chronological year of apparition. Important technological findings and characteristics are provided in summary tables. Advances are identified in terms of the latest device developments and innovative concepts of thermosiphon technology used for the heat transfer to and from the soil. Applications are presented in a novel, well-defined classification in which major ground coupled thermosiphon applications are categorized in terms of medium and low temperature technologies. Finally, performance evaluation is meticulously discussed in terms of modeling, simulations, parametric, and experimental studies. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
dc.language.isoeng
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85068054593&doi=10.3390%2finventions4010014&partnerID=40&md5=798a07fe86f92e5dd7a38786d8213b6a
dc.sourceInventions
dc.subjectGround-coupled natural circulating devicesspa
dc.subjectHeat pipespa
dc.subjectModeling and experimentalspa
dc.subjectThermosiphonspa
dc.titleGround-coupled natural circulating devices (Thermosiphons): A review of modeling, experimental and development studies
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambientalspa
dc.publisher.programIngeniería en Energíaspa
dc.identifier.doi10.3390/inventions4010014
dc.relation.citationvolume4
dc.relation.citationissue1
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationBadache, M., CanmetENERGY Natural Resources Canada, 1615 Lionel Boulet Blvd., P.O.Box 4800, Varennes, QC J3X1S6, Canada
dc.affiliationAidoun, Z., CanmetENERGY Natural Resources Canada, 1615 Lionel Boulet Blvd., P.O.Box 4800, Varennes, QC J3X1S6, Canada
dc.affiliationEslami-Nejad, P., CanmetENERGY Natural Resources Canada, 1615 Lionel Boulet Blvd., P.O.Box 4800, Varennes, QC J3X1S6, Canada
dc.affiliationBlessent, D., Department of environmental engineering, Universidad de Medellín, Medellín, 50026, Colombia
dc.relation.referencesJulia, R., (2008) Thermosiphon Loops for Heat Extraction from the Ground, , Master’s Thesis, KTH School of Industrial Engineering and Management, Stockholm, Sweden
dc.relation.referencesKaltschmitt, M., Streicher, W., Wiese, A., (2007) Renewable Energy Technology Economics and Environment
dc.relation.referencesSpringer Science & Business Media: Berlin/Heidelberg, p. 564. , Germany, ISBN 978-3-540-70949-7
dc.relation.referencesFranco, A., Vaccaro, M., On the use of heat pipe principle for the exploitation of medium low temperature geothermal resources (2013) Appl. Therm. Eng., 59, pp. 189-199
dc.relation.referencesAresti, L., Christodoulides, P., Florides, G., A review of the design aspects of ground heat exchangers (2018) Renew. Sustain. Energy Rev., 92, pp. 757-773
dc.relation.referencesFlorides, G., Kalogirou, S., Ground heat exchangers—A review of systems, models and applications (2007) Renew. Energy, 32, pp. 2461-2478
dc.relation.referencesRichardson, P., Tough Alaska conditions prove new pile design’s versatility (1979) Alaska Constr. Oil, pp. 20-28
dc.relation.referencesWu, J., Ma, W., Sun, Z., Wen, Z., In-situ study on cooling effect of the two-phase closed thermosyphon and insulation combinational embankment of the Qinghai-Tibet Railway (2010) Cold Reg. Sci. Technol., 60, pp. 234-244
dc.relation.referencesWagner, A., (2014) Review of Thermosyphon Applications, , http://acwc.sdp.sirsi.net/client/default, The US Army Engineer Research and Development Center: Hanover, NH, USA ERDC/CRREL-TR-14-1, accessed on 21 September 2018
dc.relation.referencesLong, E.L., Zarling, J.P., Passive Techniques for Ground Temperature Control (2004) Thermal Analysis, Construction, and Monitoring Methods for Frozen Ground, pp. 77-165. , American Society of Civil Engineers: Reston, VA, USA
dc.relation.referencesMc Fadden, T., (2001) Design Manual for Stabilizing Foundations on Permafrost, 181. , https://www.uaf.edu/ces/energy/housing_energy/resources/Permafrost-design-manual.pdf, Available online, accessed on 21 September 2018
dc.relation.referencesYarmak, E., Long, E., Recent Developments in Thermosyphon Technology (2002) Proceedings of the 11Th International Conference on Cold Regions Engineering, pp. 656-662. , Anchorage, AK, USA, 20–22 May
dc.relation.referencesMcFadden, T.T., Bennett, F.L., (1991) Construction in Cold Regions: A Guide for Planners, Engineers, Contractors, and Managers, , John Wiley & Sons: Hoboken, NJ, USA, ISBN-13: 978-0471525035
dc.relation.referencesCarotenuto, A., Casarosa, C., Martorano, L., The geothermal convector: Experimental and numerical results (1999) Appl. Therm. Eng., 19, pp. 349-374
dc.relation.referencesBertsch, S., Groll, E.A., Whitacre, K., Modeling of a CO2 thermosyphon for a ground source heat pump application (2005) Proceedings of the 8Th International Energy Agency for Heat Pump Conference, , Las Vegas, NY, USA, 30 May–2 June
dc.relation.referencesWagner, A.M., Edward, Y., Jr., Using Frozen Barriers for Containment of Contaminants (2017) Cold Regions Research and Engineering Laboratory, US Army Engineer Research and Development Center Hanover United States, , https://apps.dtic.mil/docs/citations/AD1039597, accessed on 21 September 2018
dc.relation.references(2014) Thermosyphon Foundations for Buildings in Permafrost Regions, , National Standard of Canada: Ottawa, ON, Canada,
dc.relation.referencesISBN 9781771396042
dc.relation.referencesWagner, A.M., Yarmak, E., (2012) Demonstration of an Artificial Frozen Barrier Cold Regions Research Demonstration of an Artificial Frozen Barrier, , https://apps.dtic.mil/docs/citations/ADA571582, Available online, accessed on 21 January 2019
dc.relation.referencesGaugler, R.S., (1942) Heat Transfer Device, , U.S. Patent US2,350,348A, 21 December
dc.relation.referencesReay, D., McGlen, R., Kew, P., (2006) Heat Pipes Theory and Design, , 5th ed.
dc.relation.referencesButterworth Heinemann: Oxford, UK, 9780750667548
dc.relation.referencesHeuer, C.E., The Application of Heat Pipes on the Trans-Alaska Pipeline. (No. CRREL-SR-79-26) (1979) Cold Regions Research and Engineering Lab Hanover NH, p. 34. , http://dtic.mil/dtic/tr/fulltext/u2/a073597.pdf, Available online, (accessed on 21 September 2018)
dc.relation.referencesNguyen, T., Johnson, P., Akbarzadeh, A., Gibson, K., Mochizuki, M., Design, manufacture and testing of a closed cycle thermosyphonrankine engine (1995) Heat Recov. Syst. CHP, 15, pp. 333-346
dc.relation.referencesZiapour, B.M., Performance analysis of an enhanced thermosyphon Rankine cycle using impulse turbine (2009) Energy, 34, pp. 1636-1641
dc.relation.referencesLockett, G., Single borehole geothermal energy extraction system for electrical power generation (1986) Proceedings of the Eleventh Workshop on Geothermal Reservoir Engineering, pp. 215-216. , Stanford, CA, USA, 21–23 January
dc.relation.referencesHolubec, I., Flat Loop Thermosyphon Foundations in Warm Permafrost (2008) Government of Northwest Territories Thermosyphon Foundations in Warm Permafrost—Report, p. 119. , https://pievc.ca/government-northwest-territories-thermosyphon-foundations-warm-permafrost, Available online, accessed on 21 September 2018
dc.relation.referencesKruse, H., (1998) Terrestrial Heat Probe for Use in Heat Pump System for Heating, , German Patent DE19860328A1, 24 December
dc.relation.referencesKruse, H., Russmann, H., The Status of Development and Research on CO2 Earth Heat Pipes for Geothermal Heat Pumps International High Performance Buildings Conference, , http://docs.lib.purdue.edu/ihpbc/51, Paper 51. Available online, accessed on 21 September 2018
dc.relation.referencesOchsner, K., Carbon dioxide heat pipe in conjunction with a ground source heat pump (GSHP) (2008) Appl. Therm. Eng., 28, pp. 2077-2082
dc.relation.referencesKruse, H., Russmann, H., Novel CO2-heat pipe as earth probe for heat pumps without auxiliary pumping energy (2005) Proceedings of the 8Th International IEA Heat Pump Conference, , Las Vegas, NV, USA, 30 May–2 June
dc.relation.referencesRieberer, R., Naturally circulating probes and collectors for ground-coupled heat pumps (2005) Int. J. Refrig., 28, pp. 1308-1315
dc.relation.referencesAcuña, J., Palm, B., Khodabandeh, R., Weber, K., Ab, E., Distributed Temperature Measurements on a U-Pipe Thermosyphon Borehole Heat Exchanger with CO2 (2010) Proceedings of the 9Th IIR Gustav Lorentzen Conference, , Sydney, Australia, 12–14 April
dc.relation.referencesEbeling, J.C., Kabelac, S., Luckmann, S., Kruse, H., Simulation and experimental validation of a 400 m vertical CO2 heat pipe for geothermal application (2017) Heat Mass Transf, 53, pp. 3257-3265
dc.relation.referencesEbeling, J.C., Luo, X., Kabelac, S., Luckmann, S., Kruse, H., Dynamic simulation and experimental validation of a two-phase closed thermosyphon for geothermal application (2017) Propuls. Power Res., 6, pp. 107-116
dc.relation.referencesHaynes, F.D., Zarling, P., Quinn, F., Sollecito, P.E.M., (1992) Passive-Active Thermosyphon, , U.S. Patent US07, 883, 443, 15 May
dc.relation.referencesUdell, K.S., Jankovich, P., Kekelia, B., Seasonal underground thermal energy storage using smart thermosiphon technology (2009) Proceedings of the Geothermal Resources Council 2009, Annual Meeting, GRC Transactions, 33, pp. 643-647. , Reno, NV, USA, 4–7 October
dc.relation.referencesKekelia, B., Udell, K.S., Grid-Independent Air Conditioning Using Underground Thermal Energy Storage (UTES) and Reversible Thermosiphon Technology: Experimental Results (2011) Proceedings of the ASME 2011 5Th International Conference on Energy Sustainability, pp. 1245-1254. , Washington, DC, USA, 7–10 August
dc.relation.referencesJankovich, P.M., (2012) Seasonal Underground Thermal Energy Storage Using Smart Thermosiphon Arrays, , Ph.D. Thesis, The University of Utah, Salt Lake City, UT, USA
dc.relation.referencesRieberer, R., Moser, H., Naturally Circulating Collector for Heat Pumps-Initial Results (2006) Proceedings of the 7Th IIR Gustav Lorentzen Conference on Natural Working Fluids, , Trondheim, Norway, 28–31 May
dc.relation.referencesVasiliev, L.L., Academy, N., Vassiliev, L.L., Academy, N., Vassiliev, L.L., Heat Pipes and nanotechnologies Microscale and Nanoscale Heat Transfer: Analysis, Design, and Application Edition, p. 505. , CRC Press: Boca Raton, FL, USA, 2016
dc.relation.referencesChapter 8, ISBN 9781498736312
dc.relation.referencesVasiliev, L., Grakovich, L.P., Rabetsky, M., Vasiliev, L.J., Heat transfer enhancement in heat pipes and thermosyphons using nanotechnologies (Nanofluids, nanocoatings, and nanocomposites) as an hp envelope (2013) Heat Pipe Sci. Technol. Int. J., 4, pp. 251-275
dc.relation.referencesWang, X., Fan, H., Zhu, Y., Zhu, M., Heat Transfer Simulation and Analysis of Ice and Snow Melting System Using Geothermy by Super-long Flexible Heat Pipes (2017) Energy Procedia, 105, pp. 4724-4730
dc.relation.referencesZhuravlyov, A.S., Vasiliev, L.L., Vasiliev, L.L., Jr., Horizontal vapordynamicthermosyphons, fundamentals and practical applications (2013) Heat Pipe Sci. Technol. Int. J., 4, pp. 39-52
dc.relation.referencesVasiliev, L.L., Kiselev, V.G., Valery, A., Rudnev, E.A., Nesvit, V.A., Dunaevsky, L.M., Tverdokhleb, N.F., Davis, P.E.W., (1985) Heat-Transfer Device, , U.S. Patent 45,554,966, 26 November
dc.relation.referencesVasiliev, L., Vasiliev, L., Zhuravlyov, A., Shapovalov, A., Rodin, A., Vapordynamicthermosyphon-Heat transfer two-phase device for wide applications (2015) Arch. Thermodyn., 36, pp. 65-76
dc.relation.referencesVasiliev, L.L., Grakovich, L.P., Rabetsky, M.I., Vassiliev, L.L., Zhuravlyov, A.S., Thermosyphons with innovative technologies (2017) Appl. Therm. Eng., 111, pp. 1647-1654
dc.relation.referencesVasiliev, L.L., Vaaz, S.L., (1986) Freezing and Heating of Ground by means of Cooling Devices, , NaukaiTekhnika: Minsk, Belarus, (In Russian)
dc.relation.referencesRead, J.P.R.H., Pullen, K.R., Gordon, M., (2010) A Thermosyphon Heat Transfer Device with Bubble Driven Rotor, , WO2011158008A3, 18 June
dc.relation.referencesLong, E.L., Designing friction piles for increased stability at lower installed cost in permafrost (1973) Proceedings of the Permafrost-The North American Contribution to the Second International Conference, , Yakutsk
dc.relation.referencesNational Academy of Sciences: Washington, DC, USA
dc.relation.referencesYarmak, E., Permafrost Foundations Thermally Stabilized Using Thermosyphons (2015) Proceedings of the OTC Arctic Technology Conference, pp. 23-25. , Copenhagen, Denmark, 23–25 March
dc.relation.referencesAcuña, J., (2013) Distributed Thermal Response Tests: New Insights on U-Pipe and Coaxial Heat Exchangers in Groundwater-Filled Boreholes, , Ph.D. Dissertation, KTH Royal Institute of Technology, Stockholm, Sweden
dc.relation.referencesMashiko, K., Mochizuki, M., Watanabe, Y., Kanai, Y., Eguchi, K., Shiraishi, M., Development of a Large Scale Loop Type Gravity Assisted Heat Pipe Having Showering Nozzles Proceedings of the 4Th International Heat Pipe Symposium, pp. 264-274. , Tsukuba, Japan, 16–18 May 1994
dc.relation.referencesHayley, D.W., Application of heat pipes to design of shallow foundations on permafrost (1982) Proceedings of the 4Th Canadian Permafrost Conference, pp. 535-544. , National Research Council of Canada: Ottawa, ON, Canada
dc.relation.referencesWang, X., Zhu, Y., Zhu, M., Zhu, Y., Fan, H., Wang, Y., Thermal analysis and optimization of an ice and snow melting system using geothermy by super-long flexible heat pipes (2017) Appl. Therm. Eng., 112, pp. 1353-1363
dc.relation.referencesWang, X., Wang, Y., Wang, Z., Liu, Y., Zhu, Y., Chen, H., Simulation-based analysis of a ground source heat pump system using super-long flexible heat pipes coupled borehole heat exchanger during heating season (2018) Energy Convers. Manag., 164, pp. 132-143
dc.relation.referencesXu, J., Goering, D.J., Experimental validation of passive permafrost cooling systems (2008) Cold Reg. Sci. Technol., 53, pp. 283-297
dc.relation.referencesZhi, W., Yu, S., Wei, M., Jilin, Q., Wu, J., Analysis on effect of permafrost protection by two-phase closed thermosyphon and insulation jointly in permafrost regions (2005) Cold Reg. Sci. Technol., 43, pp. 150-163
dc.relation.referencesChan, C.W., Siqueiros, E., Ling-Chin, J., Royapoor, M., Roskilly, A.P., Heat utilisation technologies: A critical review of heat pipes (2015) Renew. Sustain. Energy Rev., 50, pp. 615-627
dc.relation.referencesVasiliev, L.L., Vasiliev, L.L., Jr., Horizontal vapordynamic thermosyphons, fundamentals and practical applications (2012) Proceedings of the 16Th International Heat Pipe Conference, , Lyon, France, 20–24 May
dc.relation.referencesGrakovich, M.I., Rabetsky, L.L., Vasiliev, L.L.V.J., Polymer flat loop thermosyphons (2014) Heat Pipe Sci. Technol. Int. J., 5, pp. 1-4
dc.relation.referencesNydahl, J.E., Pell, K., Lee, R., Bridge deck heating with ground-coupled heat pipes: Analysis and design (1987) ASHRAE Trans, 93, pp. 939-958
dc.relation.referencesZorn, R., Steger, H., Kölbel, T., De-Icing and Snow Melting System with Innovative Heat Pipe Technology (2015) Proceedings of the World Geothermal Congress, pp. 1-6. , Melbourne, Australia, 19–25 April
dc.relation.referencesVasiliev, L.L., Heat pipes for ground heating and cooling (1988) Heat Recov. Syst. CHP, 8, pp. 125-139
dc.relation.referencesGriffin, R.G., Highway Bridge Deicing Using Passive Heat Sources (1982) Colorado Department of Highways, p. 71. , https://www.codot.gov/programs/research/pdfs/archive/passivedeicing.pdf, Available online, accessed on 21 September 2018
dc.relation.referencesFukuda, M., Tsuchiya, F., Ryokai, K., Mochizuki, M., Mashiko, K., Development of an artificial permafrost storage using heat pipes (1990) Proceedings of the 7Th International Heat Pipe Conference, 2, pp. 305-317. , Moscow, Russia, 21–25 May 1990
dc.relation.referencesDussadee, N., Kiatsiriroat, T., Performance analysis and economic evaluation of thermosyphon paddy bulk storage (2004) Appl. Therm. Eng., 24, pp. 401-414
dc.relation.referencesZorn, R., Steger, H., Kölbel, T., Kruse, H., Deep Borehole Heat Exchanger with a CO2 Gravitational Heat Pipe (2008) Proceedings of the Geocongress 2008: Geosustainability and Geohazard Mitigation, pp. 899-906. , New Orleans, LA, USA, 9–12 March
dc.relation.referencesRieberer, R., Mittermayr, K., Halozan, H., CO2 Thermosyphons as Heat Source System for Heat Pumps-4 Years of Market Experience (2005) Proceedings of the 8Th IEA Heat Pump Conference, , Las Vegas, NV, USA, 30 May–2 June
dc.relation.referencesUdell, K.S., Kekelia, B., Jankovich, P., Net Zero Energy Air Conditioning Using Smart Thermosiphon Arrays (2011) ASHRAE Trans, 117, pp. 892-898
dc.relation.referencesKekelia, B., (2012) Heat Transfer to and from a Reversible Thermosiphon Placed in Porous Media, , https://search.proquest.com/openview/d6b0c7ce0d1b891aa8a14e5d07d0e6a3/1?cbl=18750&diss=y&pq-origsite=gscholar, Ph.D. Thesis, The University of Utah, Salt Lake City, UT, USA, accessed on 21 September 2018
dc.relation.referencesMu, Y., Li, G., Yu, Q., Ma, W., Wang, D., Wang, F., Numerical study of long-term cooling effects of thermosyphons around tower footings in permafrost regions along the Qinghai-Tibet Power Transmission Line (2016) Cold Reg. Sci. Technol., 121, pp. 237-249
dc.relation.referencesWei, M., Guodong, C., Qingbai, W., Construction on permafrost foundations: Lessons learned from the Qinghai-Tibet railroad (2009) Cold Reg. Sci. Technol., 59, pp. 3-11
dc.relation.referencesJin, H., Hao, J., Chang, X., Zhang, J., Yu, Q., Qi, J., Lü, L., Wang, S., Zonation and assessment of frozen-ground conditions for engineering geology along the China–Russia crude oil pipeline route from Mo’he to Daqing, Northeastern China (2010) Cold Reg. Sci. Technol., 64, pp. 213-225
dc.relation.referencesLi, G., Yu, Q., Ma, W., Chen, Z., Mu, Y., Guo, L., Wang, F., Freeze–thaw properties and long-term thermal stability of the unprotected tower foundation soils in permafrost regions along the Qinghai–Tibet Power Transmission Line (2016) Cold Reg. Sci. Technol., 121, pp. 258-274
dc.relation.referencesWang, H., Zhao, J., Chen, Z., Experimental investigation of ice and snow melting process on pavement utilizing geothermal tail water (2008) Energy Convers. Manag., 49, pp. 1538-1546
dc.relation.referencesWagner, A.M., Creation of an artificial frozen barrier using hybrid thermosyphons (2013) Cold Reg. Sci. Technol., 96, pp. 108-116
dc.relation.referencesLynn, S.W., Rhodes, C., Evaluation of a vertical frozen soil barrier at oak ridge national laboratory (2000) Remediat. J., 10, pp. 15-33
dc.relation.referencesEskilson, P., (1987) Thermal Analysis of Heat Extraction Boreholes, , Ph.D. Thesis, Lund University, Department of Mathematical Physics, Lund, Sweden
dc.relation.referencesLi, M., Lai, A.C.K., Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales (2015) Appl. Energy, 151, pp. 178-191
dc.relation.referencesRees, S., (2016) Advances in Ground-Source Heat Pump Systems, p. 482. , 1st ed.
dc.relation.referencesWoodhead Publishing: Sawston, UK, ISBN 0081003226
dc.relation.referencesYang, H., Cui, P., Fang, Z., Vertical-borehole ground-coupled heat pumps: A review of models and systems (2010) Appl. Energy, 87, pp. 16-27
dc.relation.referencesCarslaw, H.S., Jaeger, J.C., (1959) Conduction of Heat in Solids, , 2nd ed.
dc.relation.referencesClarendon Press: Oxford, UK
dc.relation.referencesIngersoll, L.R., Zabel, O.J., Ingersoll, A.C., (1955) Heat Conduction with Engineering, Geological, and Other Applications, p. 325. , 3rd ed.
dc.relation.referencesThames and Hudson: London, UK
dc.relation.referencesZeng, H.Y., Diao, N.R., Fang, Z.H., A finite line-source model for boreholes in geothermal heat exchangers (2002) Heat Transf. Asian Res., 31, pp. 558-567
dc.relation.referencesZeng, H., Diao, N., Fang, Z., Heat transfer analysis of boreholes in vertical ground heat exchangers (2003) Int. J. Heat Mass Transf., 46, pp. 4467-4481
dc.relation.referencesYavuzturk, C., Spitler, J.D., Rees, S.J., A Transient two-dimensional finite volume model for the simulation of vertical U-tube ground heat exchangers (1999) ASHRAE Trans, 105, pp. 465-474
dc.relation.referencesBozzoli, F., Pagliarini, G., Rainieri, S., Schiavi, L., Estimation of soil and grout thermal properties through a TSPEP (Two-step parameter estimation procedure) applied to TRT (thermal response test) data (2011) Energy, 36, pp. 839-846
dc.relation.referencesAl-Khoury, R., (2012) Computational Modeling of Shallow Geothermal Systems, , CRC Press: Boca Raton, FL, USA
dc.relation.referencesLondon, UK, ISBN 0415596270
dc.relation.referencesBeier, R.A., Smith, M.D., Spitler, J.D., Reference data sets for vertical borehole ground heat exchanger models and thermal response test analysis (2011) Geothermics, 40, pp. 79-85
dc.relation.referencesSalim Shirazi, A., Bernier, M., A small-scale experimental apparatus to study heat transfer in the vicinity of geothermal boreholes (2014) HVAC&R Res, 20, pp. 819-827
dc.relation.referencesChen, L., Yu, W., Lu, Y., Liu, W., Numerical simulation on the performance of thermosyphon adopted to mitigate thaw settlement of embankment in sandy permafrost zone (2018) Appl. Therm. Eng., 128, pp. 1624-1633
dc.relation.referencesParamonov, V.N., Sakharov, I.I., Calculations of thermal stabilization of transport embankments and their bases (2017) Procedia Eng, 189, pp. 472-477
dc.relation.referencesZhao, X.Y., Wang, J., Wang, Y.Z., The temperature control technology of bridge foundation in permafrost regions (2017) Procedia Eng, 210, pp. 235-239
dc.relation.referencesPei, W., Zhang, M., Li, S., Lai, Y., Jin, L., Zhai, W., Yu, F., Lu, J., Geotemperature control performance of two-phase closed thermosyphons in the shady and sunny slopes of an embankment in a permafrost region (2017) Appl. Therm. Eng., 112, pp. 986-998
dc.relation.referencesLim, H., Kim, C., Cho, Y., Kim, M., Energy saving potentials from the application of heat pipes on geothermal heat pump system (2017) Appl. Therm. Eng., 126, pp. 1191-1198
dc.relation.referencesYu, F., Zhang, M., Lai, Y., Liu, Y., Qi, J., Yao, X., Crack formation of a highway embankment installed with two-phase closed thermosyphons in permafrost regions: Field experiment and geothermal modelling (2017) Appl. Therm. Eng., 115, pp. 670-681
dc.relation.referencesZhang, M., Pei, W., Lai, Y., Niu, F., Li, S., Numerical study of the thermal characteristics of a shallow tunnel section with a two-phase closed thermosyphon group in a permafrost region under climate warming (2017) Int. J. Heat Mass Transf., 104, pp. 952-963
dc.relation.referencesLu, Y., Yi, X., Yu, W., Liu, W., Numerical analysis on the thermal regimes of thermosyphon embankment in snowy permafrost area (2017) Sci. Cold Arid Reg., 9, pp. 580-586
dc.relation.referencesOzsoy, A., Yildirim, R., Prevention of icing with ground source heat pipe: A theoretical analysis for Turkey’s climatic conditions (2016) Cold Reg. Sci. Technol., 125, pp. 65-71
dc.relation.referencesMu, Y., Wang, G., Yu, Q., Li, G., Ma, W., Zhao, S., Thermal performance of a combined cooling method of thermosyphons and insulation boards for tower foundation soils along the Qinghai–Tibet Power Transmission Line (2016) Cold Reg. Sci. Technol., 121, pp. 226-236
dc.relation.referencesHartmann, F., Behrend, R., Hantsch, A., Grab, T., Gross, U., Numerical investigation of the performance of a partially wetted geothermal thermosyphon at various power demand schemes (2015) Geothermics, 55, pp. 99-107
dc.relation.referencesGrab, D.I.T., Storch, D.I.T., Wagner, S., Gross, U., Wechselwirkungen zwischen Heiz-und Kühlkreislauf bei einem geothermischen Direktverdampfer-Sondenfeld (2010) Deutsche Kälte-und Klimatagung, DKV, Magdeburg, , https://tu-freiberg.de/sites/default/files/media/professur-fuer-technische-thermodynamik-15264/Publikationen_Grab/2010-grab-dkv-magdeburg-wechselwirkungen-zw.-heiz-und-kuehlkreislauf.pdf, Available online, (accessed on 20 February 2019)
dc.relation.referencesAbdalla, B., Fan, C., McKinnon, C., Gaffard, V., Numerical Study of Thermosyphon Protection for Frost Heave (2015) Proceedings of the ASME 2015 34Th International Conference on Ocean, Offshore and Arctic Engineering, , St. John’s, NL, Canada, 31 May–5 June
dc.relation.referencesMu, Y., Li, G., Yu, Q., Ma, W., Zhang, Q., Guo, L., Chen, Z., Numerical simulation of heat transfer processes of cone-cylinder pile and cooling effects of thermosyphon along the Qinghai–Tibet DC Interconnection project (2014) J. Glaciol. Geocryol., 36, pp. 106-117
dc.relation.referencesMa, C., Wu, X., Gao, S., Analysis and applications of a two-phase closed thermosyphon for improving the fluid temperature distribution in wellbores (2013) Appl. Therm. Eng., 55, pp. 1-6
dc.relation.referencesFilippeschi, S., Su, Y., Riffat, S.B., Lucio, L., Feasibility of periodic thermosyphons for environmentally friendly ground source cooling applications (2013) Int. J. Low-Carbon Technol., 8, pp. 117-123
dc.relation.referencesHantsch, A., Gross, U., Numerical investigation of partially-wetted geothermal heat pipe performance (2013) Geothermics, 47, pp. 97-103
dc.relation.referencesNakaoka, J., (2012) Heat Transfer Analysis of Thermosiphons and U-Tube Ground Source Heat Pumps, , Masters’s Thesis, The University of Utah, Salt Lake City, UT, USA
dc.relation.referencesDong, Y., Lai, Y., Chen, W., Cooling effect of combined L-shaped thermosyphon, crushed-rock revetment and insulation for high-grade highways in permafrost regions (2012) Chin. J. Geotechn. Eng., 34, pp. 1043-1049
dc.relation.referencesZhang, M., Lai, Y., Zhang, J., Sun, Z., Numerical study on cooling characteristics of two-phase closed thermosyphon embankment in permafrost regions (2011) Cold Reg. Sci. Technol., 65, pp. 203-210
dc.relation.referencesWang, Z., McClure, M.W., Horne, R.N., A single-well EGS configuration using a thermosyphon (2009) In Proceedings of the 34Th Workshop on Geothermal Reservoir Engineering, , Stanford, CA, USA, 9–11 February , . Paper SGP-TR-187
dc.relation.referencesJardine, J.D., Long, E.L., Yarmak, E., Thermal analysis of forced-air and thermosyphon cooling systems for the Inuvik airport expansion: Discussion (1992) Can. Geotech. J., 29, pp. 998-1001
dc.relation.referencesSmith, L.B., Graham, J.P., Nixon, J.F., Washuta, A.S., Thermal analysis of forced-air and thermosyphon cooling systems for the Inuvik airport expansion (1991) Can. Geotech. J., 28, pp. 399-409
dc.relation.referencesCui, P., Yang, H., Fang, Z., Numerical analysis and experimental validation of heat transfer in ground heat exchangers in alternative operation modes (2008) Energy Build, 40, pp. 1060-1066
dc.relation.referencesYavuzturk, C., Spitler, J.D., Field validation of a short time step model for vertical ground-loop heat exchangers/Discussion (2001) ASHRAE Trans, 107, p. 617
dc.relation.referencesJaved, S., New Analytical and Numerical Solutions for the Short-term Analysis of Vertical Ground Heat Exchangers (2011) ASHRAE Trans, 117, pp. 3-12
dc.relation.referencesLi, M., Lai, A.C.K., Analytical model for short-time responses of ground heat exchangers with U-shaped tubes: Model development and validation (2013) Appl. Energy, 104, pp. 510-516
dc.relation.referencesViskanta, R., Phase change heat transfer in porous media (1991) Proceedings of the 3Rd International Symposium on Cold Region Heat Transfer, pp. 1-24. , Fairbanks, AK, USA
dc.relation.referencesBazri, S., Anjum, I., Sajad, M., A review of numerical studies on solar collectors integrated with latent heat storage systems employing fi ns or nanoparticles (2018) Renew. Energy, 118, pp. 761-778
dc.relation.referencesYang, W., Kong, L., Chen, Y., Numerical evaluation on the effects of soil freezing on underground temperature variations of soil around ground heat exchangers (2015) Appl. Therm. Eng., 75, pp. 259-269
dc.relation.referencesEslami-Nejad, P., Bernier, M., Freezing of geothermal borehole surroundings: A numerical and experimental assessment with applications (2012) Appl. Energy, 98, pp. 333-345
dc.relation.referencesSheshukov, A.Y., Egorov, A.G., Frozen barrier evolution in saturated porous media (2002) Adv. Water Resour., 25, pp. 591-599
dc.relation.referencesZhang, G.G., Horne, W.B.T., Applications of numerical thermal analysis in engineering designs and evaluations for northern mines (2010) Proceedings of the 63Rd Canadian Geotechnical Conference & 6Th Canadian Permafrost Conference, pp. 617-624. , Calgary, AB, Canada, 12–16 September
dc.relation.referencesYu, F., Qi, J., Zhang, M., Lai, Y., Yao, X., Liu, Y., Wu, G., Cooling performance of two-phase closed thermosyphons installed at a highway embankment in permafrost regions (2016) Appl. Therm. Eng., 98, pp. 220-227
dc.relation.referencesHo, I.-H., Dickson, M., Numerical modeling of heat production using geothermal energy for a snow-melting system (2017) Geomech. Energy Environ., 10, pp. 42-51
dc.relation.referencesDuffie, J.A., Beckman, W.A., (2013) Solar Engineering of Thermal Processes, , John Wiley & Sons: Hoboken, NJ, USA, ISBN 0470873663
dc.relation.referencesGivoni, B., Mostrel, M., Passive solar journal (1982) Passive Sol. J., 1, pp. 229-238
dc.relation.referencesRao, K.G., Estimation of the exchange coefficient of heat during low wind convective conditions (2004) Bound.-Lay. Meteorol., 111, pp. 247-273
dc.relation.referencesMcAdams, W.H., (1954) Heat Transmission, p. 330. , McGraw-Hill: New York, NY, USA
dc.relation.referencesPalyvos, J.A., A survey of wind convection coefficient correlations for building envelope energy systems’ modeling (2008) Appl. Therm. Eng., 28, pp. 801-808
dc.relation.referencesFaghri, A., (1995) Heat Pipe Science and Technology, , 2nd ed.
dc.relation.referencesGlobal Digital Press: Kanpur, India, 1560323833
dc.relation.referencesJafari, D., Franco, A., Filippeschi, S., Di Marco, P., Two-phase closed thermosyphons: A review of studies and solar applications (2016) Renew. Sustain. Energy Rev., 53, pp. 575-593
dc.relation.referencesDobran, F., Steady-state characteristics and stability thresholds of a closed two-phase thermosyphon (1985) Int. J. Heat Mass Transf., 28, pp. 949-957
dc.relation.referencesMirzaei, B., Hadi, Z., Heat transfer characteristics of a two-phase closed thermosyphon using different working fluids (2010) Heat Mass Transf, 46, pp. 307-314
dc.relation.referencesEl-Genk, M.S., Saber, H.H., Flooding limit in closed, two-phase flow thermosyphons (1997) Int. J. Heat Mass Transf., 40, pp. 2147-2164
dc.relation.referencesPan, Y., Condensation heat transfer characteristics and concept of sub-flooding limit in a two-phase closed thermosyphon (2001) Int. Commun. Heat Mass Transf., 28, pp. 311-322
dc.relation.referencesFadhl, B., Wrobel, L.C., Jouhara, H., CFD modelling of a two-phase closed thermosyphon charged with R134a and R404a (2015) Appl. Therm. Eng., 78, pp. 482-490
dc.relation.referencesJouhara, H., Fadhl, B., Wrobel, L.C., Three-dimensional CFD simulation of geyser boiling in a two-phase closed thermosyphon (2016) Int. J. Hydrogen Energy, 41, pp. 16463-16476
dc.relation.referencesPan, Y., Wu, C. Numerical investigations and engineering applications on freezing expansion of soil restrained two-phase closed thermosyphons (2002) Int. J. Therm. Sci, 41, pp. 341-347
dc.relation.referencesHemmingway, P., Tolooiyan, A.P., Numerical and finite element analysis of heat transfer in a closed loop geothermal system (2013) Int. J. Green Energy, 11, pp. 206-223
dc.relation.referencesFrost Evolution in Tailings Final Report. the Atomic Energy Control Board., , https://inis.iaea.org/collection/NCLCollectionStore/_Public/24/007/24007807.pdf, Available online, accessed on 21 January 2019
dc.relation.referencesGreenslade, J., Nixon, J.F.D., Lewkowicz, A.G., Allard, M., Design aspect of a buried oil pipeline on the Alaskan north slope (1998) Proceedings of the 7Th International Conference on Permafrost, pp. 23-27. , Yellowknife, NT, Canada, 23–27 June
dc.relation.references(2018) Simmakers Frost 3D Universal, , http://frost3d.ru/eng/thermosyphon-technology-ground-freezing/, Available online, accessed on 20 August
dc.relation.referencesThermal Analysis in Engineering. Parallel Computing. Frost 3D Universal., , https://www.capterra.com/p/147397/Frost-3D-Universal/, Available online, accessed on 10 January 2019
dc.relation.referencesPlaxix Modelling of Thermosyphons Foundation System Using Plaxis 2D, , https://www.plaxis.com/support/verifications/modelling-thermosyphons-foundation-system/, Available online, accessed on 21 September 2018
dc.relation.referencesPLAXIS 3D Manuals, , https://www.plaxis.com/support/manuals/plaxis-3d-manuals, Available online, accessed on 10 January 2019
dc.relation.referencesEbeling, J.-C., Kabelac, S., Luckmann, S., Kruse, H., Quasi-dynamic model for simulation of a 400 m vertical CO2 heat pipe for geothermal application (2016) Proceedings of the 9Th International Symposium on Heat Transfer (ISHT9-Q0358), pp. 15-19. , Beijing, China, August
dc.relation.referencesRohsenow, W.M., Hartnett, J.P., Ganic, E.N., (1985) Handbook of Heat Transfer Fundamentals, p. 1440. , 2nd ed.
dc.relation.referencesMcGraw-Hill Book Co.: New York, NY, USA
dc.relation.referencesImura, H., Kusuda, H., Ogata, J.-I., Miyazaki, T., Sakamoto, N., Heat transfer in two-phase closed-type thermosyphons (1979) JSME Trans, 45, pp. 712-722
dc.relation.referencesYong-Ping, Y., Shumhua, Z., Qing-Chao, W.E.I., Effect simulation of different declining angles of thermosyphons used in Qinghai-Tibet railway permafrost embankment (2006) China Civ. Eng. J., 39, pp. 108-113
dc.relation.referencesHegab, H.E., Colwell, G.T., Thermal performance of heat pipe arrays in soil (1994) Numer. Heat Transf., 26, pp. 619-630
dc.relation.referencesZarling, J.P., Hansen, P., Kozisekl, L., Design and performance experience of foundations stabilized with thermosyphons (1990) Proceedings of the Fifth Canadian Permafrost Conference, pp. 365-370. , Quebec, QC, Canada, 6–8 June
dc.relation.referencesFeldman, K.T., Jr., Munje, S., Experiments with gravity-assisted heat pipes with and without circumferential grooves (1979) J. Energy, 3, pp. 211-216
dc.relation.referencesZarling, J.P., Haynes, F.D., (1985) Thermosyphon Devices and Slab-On-Grade Foundation Design, , https://trid.trb.org/view/273606, State of Alaska, Department of Transportation and Public Facilities, Research Section, Available online, accessed on 21 September 2018
dc.relation.referencesHaynes, F.D., Zarling, J.P., Thermosyphons and foundation design in cold regions (1988) Cold Reg. Sci. Technol., 15, pp. 251-259
dc.relation.referencesHaynes, F.D., Zarling, J.P., Gooch, G.E., Performance of a thermosyphon with a 37-m-long, horizontal evaporator (1992) Cold Reg. Sci. Technol., 20, pp. 261-269
dc.relation.referencesGuo, L., Yu, Q., You, Y., Wang, X., Li, X., Yuan, C., Cooling effects of thermosyphons in tower foundation soils in permafrost regions along the Qinghai–Tibet Power Transmission Line from Golmud, Qinghai Province to Lhasa, Tibet Autonomous Region, China (2016) Cold Reg. Sci. Technol., 121, pp. 196-204
dc.relation.referencesYamada, N., Minami, T., Anuar Mohamad, M.N., Fundamental experiment of pumpless Rankine-type cycle for low-temperature heat recovery (2011) Energy, 36, pp. 1010-1017
dc.relation.referencesHeuer, C.E., Passive techniques for ground temperature control (1985) Therm. Des. Consid. Frozen Ground Eng., pp. 72-154
dc.relation.referencesEidan, A.A., Najim, S.E., Jalil, J.M., Experimental and numerical investigation of thermosyphon performance in HVAC system applications (2016) Heat Mass Transf, 52, pp. 2879-2893
dc.relation.referencesNemec, P., Čaja, A., Malcho, M., Mathematical model for heat transfer limitations of heat pipe (2013) Math. Comput. Model., 57, pp. 126-136
dc.relation.referencesQiu, B.J.L.M., Zhang, Z.H.G.X.B., Determination of the operation range of a vertical two-phase closed thermosyphon (2012) Heat Mass Transf, 48, pp. 1043-1055
dc.relation.referencesMa, W., Wen, Z., Sheng, Y., Wu, Q., Wang, D., Feng, W., Remedying embankment thaw settlement in a warm permafrost region with thermosyphons and crushed rock revetment (2012) Can. Geotech. J., 49, pp. 1005-1014
dc.relation.referencesKusaba, S., Suzuki, H., Hirowatari, K., Mochizuki, M., Mashiko, K., Nguyen, T., Akbarzadeh, A., Extraction of geothermal energy and electric power generation using a large heat pipe (2000) Proceedings of the World Geothermal Congress, Kyushu-Tohoku, pp. 3489-3494. , Japan, 28 May–10 June
dc.relation.referencesLund, J.W., Pavement snow melting (2000) Geo-Heat Center Q. Bull., 21, pp. 12-19
dc.relation.referencesLorentzen, G., Revival of carbon dioxide as a refrigerant (1994) Int. J. Refrig., 17, pp. 292-301
dc.relation.referencesStorch, T., Gross, U., Wagner, S., Performance of geothermal heat pipe using propane (2011) Proceedings of the 8Th Minsk International Seminar “Heat Pipes, Heat Pumps, Refrigerators, Power Sources, , Minsk, Belarus, 12–15 September
dc.relation.referencesJouhara, H., Chauhan, A., Nannou, T., Almahmoud, S., Delpech, B., Wrobel, L.C., Heat pipe based systems— Advances and applications (2017) Energy, 128, pp. 729-754
dc.relation.referencesNarendra Babu, N., Kamath, H.C., Materials used in Heat Pipe (2015) Mater. Today Proc., 2, pp. 1469-1478
dc.relation.referencesACT Advanced Cooling Technologies, , https://www.1-act.com/compatible-fluids-and-materials/, Available online, accessed on 21 September 2018
dc.relation.referencesLyazgin, A.L., Bayasan, R.M., Chisnik, S.A., Cheverev, V.G., Pustovoit, G.P., Stabilization of pile foundations subjected to frost heave and in thawing permafrost (2003) Proceedings of the 8Th International Conference on Permafrost, pp. 707-711. , Zurich, Switzerland, 21–25 July
dc.relation.referencesLyazgin, A.L., Ostroborodov, S.V., Pustovoit, G.P., Shevtsov, K.P., Leveling of pile foundations supporting electric transmission lines by temperature control of bed soils (2004) Soil Mech. Found. Eng., 41, pp. 23-26
dc.relation.referencesBayasan, R.M., Korotchenko, A.G., Volkov, N.G., Pustovoit, G.P., Lobanov, A.D., Use of two-phase heat pipes with the enlarged heat-exchange surface for thermal stabilization of permafrost soils at the bases of structures (2008) Appl. Therm. Eng., 28, pp. 274-277
dc.relation.referencesBayasan, R.M., Korotchenko, A.G., Lobanov, A.D., Using of minor diameter thermo-stabilizers in the North construction engineering (2001)
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem