Mostrar el registro sencillo del ítem

dc.creatorHidalgo C.
dc.creatorCarvajal G.
dc.creatorMuñoz F.
dc.date2019
dc.date.accessioned2021-02-05T14:59:18Z
dc.date.available2021-02-05T14:59:18Z
dc.identifier.issn20711050
dc.identifier.urihttp://hdl.handle.net/11407/6088
dc.descriptionBrick is one of the most common building materials, and it is also one of the largest components of waste generated from both construction and demolition. Reuse of this waste would reduce the environmental and social impacts of construction. One potential bulk use of such waste is as a cementing agent for soil stabilization. However, this is currently limited by the need to mill the residue to a particle size below 0.035 mm. In this study, the behavior of two soil types stabilized using alkali-activated brick dust was investigated. The unconfined compression strength at different curing temperatures and moistures and the use of different types and concentrations of alkaline activators were investigated. It was found that the addition of brick dust resulted in an increase in the soil strength between 1.7-2.3 times with respect to the non-stabilized material, suggesting that the resulting materials will find practical applications in construction. © 2019 by the authors.
dc.language.isoeng
dc.publisherMDPI AG
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85061579637&doi=10.3390%2fsu11040967&partnerID=40&md5=06afaef93e6f7ab5872744526177274a
dc.sourceSustainability (Switzerland)
dc.titleLaboratory Evaluation of Finely Milled Brick Debris as a Soil Stabilizer
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Civilspa
dc.identifier.doi10.3390/su11040967
dc.relation.citationvolume11
dc.relation.citationissue4
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationHidalgo, C., School of Engineering, Civil Engineering Program, Universidad de Medellin, Medellin, 050026, Colombia
dc.affiliationCarvajal, G., School of Engineering, Civil Engineering Program, Universidad de Medellin, Medellin, 050026, Colombia
dc.affiliationMuñoz, F., School of Engineering, Civil Engineering Program, Universidad de Medellin, Medellin, 050026, Colombia
dc.relation.referencesFang, S., Hong, H., Zhang, P., Mechanical Property Tests and Strength Formulas of Basalt Fiber Reinforced Recycled Aggregate Concrete (2018) Materials, 11, p. 1851
dc.relation.referencesSilva, R., de Brito, J., Dhir, R., Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production (2014) Constr. Build. Mater., 65, pp. 201-217
dc.relation.referencesTam, V., Chapter 24-Recovery of Construction and DemolitionWastes (2014) Handbook of Recycling, pp. 385-396. , Elsevier: Amsterdam, The Netherlands
dc.relation.referencesAllahverdi, A., Kani, E.N., Construction wastes as raw materials for geopolymer binders (2009) Int. J. Civ. Eng., 7, pp. 154-160
dc.relation.referencesXuan, D.X., Molenaar, A.A.A., Houben, L.J.M., Evaluation of cement treatment of reclaimed construction and demolition waste as road bases (2015) J. Clean. Prod., 100, pp. 77-83
dc.relation.referencesColangelo, F., Petrillo, A., Cioffi, R., Borrelli, C., Forcina, A., Life cycle assessment of recycled concretes: A case study in southern Italy (2018) Sci. Total Environ., 615, pp. 1506-1517
dc.relation.referencesColangelo, F., Cioffi, R., Mechanical properties and durability of mortar containing fine fraction of demolition wastes produced by selective demolition in South Italy (2017) Compos. Part B, 115, pp. 43-50
dc.relation.referencesAliabdo, A.A., Abd-Elmoaty, A.M., Hassan, H.H., Utilization of crushed clay brick in concrete industry (2014) Alex. Eng. J., 53, pp. 151-168
dc.relation.referencesEvangelista, L., de Brito, J., Concrete with fine recycled aggregates: A review (2014) Eur. J. Environ. Civ. Eng., 18, pp. 129-172
dc.relation.referencesHossain, K., Lachemi, M., Easa, S., Stabilized soils for construction applications incorporating natural resources of Papua New Guinea (2007) Rosour. Conserv. Recycl., 51, pp. 711-731
dc.relation.referencesQiao, D., Qian, J., Wang, Q., Dang, Y., Zhang, H., Zenga, D., Utilization of sulfate-rich solid wastes in rural road construction in the Three Gorges Reservoir (2010) Rosour. Conserv. Recycl., 54, pp. 1368-1376
dc.relation.referencesXuan, D.X., Schlangen, E., Molenaar, A.A.A., Houben, L.J.M., Influence of quality and variation of recycled masonry aggregates on failure behavior of cement treated demolition waste (2014) Construct. Build. Mater., 71, pp. 521-527
dc.relation.referencesCabalar, A.F., Hassan, D.I., Abdulnafaa, M.D., Use of waste ceramic tiles for road pavement subgrade (2016) Road Mater. Pavement Des., 18, pp. 882-896
dc.relation.referencesCabalar, A.F., Zardikawi, O.A., Abdulnafaa, M.D., Utilisation of construction and demolition materials with clay for road pavement subgrade (2017) Road Mater. Pavement Des.
dc.relation.referencesPoon, C.S., Chan, D., Feasible use of recycled concrete aggregates and crushed clay brick as unbound road sub-base (2006) Constr. Build. Mater., 20, pp. 578-585
dc.relation.referencesArulrajah, A., Disfani, M.M., Horpibulsuk, S., Suksiripattanapong, C., Prongmanee, N., Physical properties and shear strength responses of recycled construction and demolition materials in unbound pavement base/subbase applications (2014) Construct. Build. Mater., 58, pp. 245-257
dc.relation.referencesArisha, A., Gabr, A., El-Badawy, S., Shwally, S., Using blends of construction and demolition waste materials and recycled clay masonry brick in pavement (2016) Procedia Eng., 143, pp. 1317-1324
dc.relation.referencesBektas, F., Wang, K., Ceylan, H., Effects of crushed clay brick aggregate on mortar durability (2009) Construct. Build. Mater., 23, pp. 1909-1914
dc.relation.referencesBektaş, F., Alkali reactivity of crushed clay brick aggregate (2014) Construct. Build. Mater., 52, pp. 79-85
dc.relation.referencesZong, L., Fei, Z., Zhang, S., Permeability of recycled aggregate concrete containing fly ash and clay brick waste (2014) J. Clean. Prod., 70, pp. 175-182
dc.relation.referencesKong, D.L.Y., Sanjayan, J.G., Damage behavior of geopolymer composites exposed to elevated temperatures (2008) Cem. Concr. Compos., 30, pp. 986-991
dc.relation.referencesRobayo-Salazar, R.A., Mejía-Arcila, J.M., Mejía de Gutierrez, R., Eco-efficient alkali-activated cement based on red clay brick wastes suitable for the manufacturing of building materials (2017) J. Clean. Prod., 166, pp. 242-252
dc.relation.referencesKomnitsas, K., Zaharaki, D., Vlachou, A., Bartzas, G., Galetakis, M., Effect of synthesis parameters on the quality of construction and demolition wastes (CDW) geopolymers (2015) Adv. Powder Technol., 26, pp. 368-376
dc.relation.referencesRobayo, R.A., Mulford, A., Munera, J., Mejía, R., Alternative cements based on alkali-activated red clay brick waste (2016) Construct. Build. Mater., 128, pp. 163-169
dc.relation.referencesZaharaki, D., Galetakis, M., Komnitsas, K., Valorization of construction and demolition (C&D) and industrial wastes through alkali activation (2016) Construct. Build. Mater., 121, pp. 686-693
dc.relation.referencesHidalgo, C.A., Arias, Y.P., Stabilized soils as an alternative for construction of low transit volume roads (2017) Vias de Bajo Volumen de Tránsito, 1, pp. 41-62. , 1st ed.
dc.relation.referencesMontoya, L.J., López, L.D., Eds.
dc.relation.referencesSello Editorial Universidad de Medellín: Medellín, Colombia. (In Spanish)
dc.relation.referencesTeutonico, J.M., McCaig, I., Burns, C., Ashurst, J., The Smeaton project: Factors affecting the properties of lime-based mortars (1993) APT Bull., 25, pp. 32-49
dc.relation.referencesNazari, A., Sanjayan, J.G., Synthesis of geopolymer from industrial wastes (2015) J. Clean. Prod., 99, pp. 297-304
dc.relation.referencesShekhovtsova, J., Zhernovsky, I., Kovtun, M., Kozhukhova, N., Zhernovskaya, I., Kearsley, E., Estimation of fly ash reactivity for use in alkali-activated cements-A step towards sustainable building material and waste utilization (2018) J. Clean. Prod., 178, pp. 22-33
dc.relation.referencesWeng, L., Sagoe-Crentsil, K., Brown, T., Song, S., Effects of aluminates on the formation of geopolymers (2005) Mater. Sci. Eng., 117, pp. 163-168
dc.relation.referencesPacheco-Torgal, F., Castro-Gomes, J., Jalali, S., Alkali-activated binders: A review. Part 2. About materials and binders manufacture (2008) Construct. Build. Mater., 22, pp. 1315-1322
dc.relation.referencesAntoni, A., Wiyono, D., Vianthi, A., Putra, P., Kartadinata, G., Hardjito, D., Effect of particle size on properties of sidoarjo mud-based geopolymer (2015) Mater. Sci. Forum, 803, pp. 44-48
dc.relation.referencesRyu, G.S., Lee, Y.B., Koh, K.T., Chung, Y.S., The mechanical properties of fly ash-based geopolymer concrete with alkaline activators (2013) Construct. Build. Mater., 47, pp. 409-418
dc.relation.referencesHu, W., Nie, Q., Huang, B., Shu, X., He, Q., Mechanical and microstructural characterization of geopolymers derived from red mud and fly ashes (2018) J. Clean. Prod., 186, pp. 799-806
dc.relation.referencesRodríguez, E., Mejía de Gutiérrez, R., Bernal, S., Gordillo, M., Effect of the SiO2/Al2O3 and Na2O/SiO2ratios on the properties of geopolymers based on MK (2009) Revista Facultad de Ingeniería Universidad de Antioquia, 49, pp. 30-41. , (In Spanish)
dc.relation.referencesStandard Test Method for Unconfined Compressive Strength of Compacted Soil-Lime Mixtures (Withdrawn 2018) (2009), www.astm.org, ASTM D5102-09
dc.relation.referencesASTM International: West Conshohocken, PA, USA
dc.relation.referencesLambe, T.W., Whitman, R.V., Soil Mechanics (1969), p. 582. , Wiley: New York, NY, USA
dc.relation.referencesMurthy, V., Geotechnical Engineering: Principles and Practices of Soil Mechanics and Foundation Engineering (2002), p. 1056. , Taylor & Francis Group: New York, NY, USA
dc.relation.referencesSoares, P., Pinto, A.T., Ferreira, V.M., Labrincha, J.A., Geopolímeros basados en residuos de la producción de áridos ligeros (2008) Mater. Construcc., 58, pp. 23-34
dc.relation.referencesPalomo, A., Grutzeck, M.W., Blanco, M.T., Alkali-activated fly ashes (1999) Cem. Concr. Res., 29, pp. 1323-1329
dc.relation.referencesMo, B., Zhu, H., Cui, X., He, Y., Gong, S., Effect of curing temperature on geopolymerization of metakaolin-based geopolymers (2014) Appl. Clay Sci., 99, pp. 144-148
dc.relation.referencesBakria, A.M.M.A., Kamarudin, H., BinHussain, M., Nizar, I.K., Zarina, Y., Rafiza, A.R., The effect of curing temperature on physical and chemical properties of geopolymers (2011) Phys. Procedia, 22, pp. 286-291
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem