REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mechanical and Hydraulic Behaviour of Unsaturated Residual Soils

Thumbnail
Share this
Author
Arango M.
Parra M.
Hidalgo C.
TY - GEN T1 - Mechanical and Hydraulic Behaviour of Unsaturated Residual Soils AU - Arango M. AU - Parra M. AU - Hidalgo C. UR - http://hdl.handle.net/11407/6091 PB - Institute of Physics Publishing AB - The negative effect of rains on the stability of the slopes is a problem that, added to anthropic factors and population settlements, currently generate not only material but also human losses. Therefore, the evaluation of threat by mass movements has become a first order problem. However, one of the aspects that presents the greatest uncertainty in these evaluations is the effect of soil saturation. This paper presents a methodology for evaluating the effect of rainfall by estimating the probability of soil saturation using the Richards equation and the first order and second moment method-FOSM. The methodology was applied considering two residual soils from the area of north-western Colombia named Aburra valley. For this purpose, a characterization of each material was made, evaluating the variability of shear strength parameters and hydraulic parameters. Subsequently, infiltration models were made using the Richards equation with a historical rain event that occurred between October 27 and November 13, 2010, which exceeded the failure thresholds established for the Aburra Valley and generated several landslides. The advance of the wetting front was evaluated, and the probability of saturation was determined. It was found that, in all the evaluated soils, full saturation reaches depths between 600 and 6000 mm and the probability of saturation is greater in soils from Stock de Altavista that report a lesser values of air entry suction. The mean values of φ b varies between 1.3° and 6.5° for soils from Stock de Altavista. © Published under licence by IOP Publishing Ltd. ER - @misc{11407_6091, author = {Arango M. and Parra M. and Hidalgo C.}, title = {Mechanical and Hydraulic Behaviour of Unsaturated Residual Soils}, year = {}, abstract = {The negative effect of rains on the stability of the slopes is a problem that, added to anthropic factors and population settlements, currently generate not only material but also human losses. Therefore, the evaluation of threat by mass movements has become a first order problem. However, one of the aspects that presents the greatest uncertainty in these evaluations is the effect of soil saturation. This paper presents a methodology for evaluating the effect of rainfall by estimating the probability of soil saturation using the Richards equation and the first order and second moment method-FOSM. The methodology was applied considering two residual soils from the area of north-western Colombia named Aburra valley. For this purpose, a characterization of each material was made, evaluating the variability of shear strength parameters and hydraulic parameters. Subsequently, infiltration models were made using the Richards equation with a historical rain event that occurred between October 27 and November 13, 2010, which exceeded the failure thresholds established for the Aburra Valley and generated several landslides. The advance of the wetting front was evaluated, and the probability of saturation was determined. It was found that, in all the evaluated soils, full saturation reaches depths between 600 and 6000 mm and the probability of saturation is greater in soils from Stock de Altavista that report a lesser values of air entry suction. The mean values of φ b varies between 1.3° and 6.5° for soils from Stock de Altavista. © Published under licence by IOP Publishing Ltd.}, url = {http://hdl.handle.net/11407/6091} }RT Generic T1 Mechanical and Hydraulic Behaviour of Unsaturated Residual Soils A1 Arango M. A1 Parra M. A1 Hidalgo C. LK http://hdl.handle.net/11407/6091 PB Institute of Physics Publishing AB The negative effect of rains on the stability of the slopes is a problem that, added to anthropic factors and population settlements, currently generate not only material but also human losses. Therefore, the evaluation of threat by mass movements has become a first order problem. However, one of the aspects that presents the greatest uncertainty in these evaluations is the effect of soil saturation. This paper presents a methodology for evaluating the effect of rainfall by estimating the probability of soil saturation using the Richards equation and the first order and second moment method-FOSM. The methodology was applied considering two residual soils from the area of north-western Colombia named Aburra valley. For this purpose, a characterization of each material was made, evaluating the variability of shear strength parameters and hydraulic parameters. Subsequently, infiltration models were made using the Richards equation with a historical rain event that occurred between October 27 and November 13, 2010, which exceeded the failure thresholds established for the Aburra Valley and generated several landslides. The advance of the wetting front was evaluated, and the probability of saturation was determined. It was found that, in all the evaluated soils, full saturation reaches depths between 600 and 6000 mm and the probability of saturation is greater in soils from Stock de Altavista that report a lesser values of air entry suction. The mean values of φ b varies between 1.3° and 6.5° for soils from Stock de Altavista. © Published under licence by IOP Publishing Ltd. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
The negative effect of rains on the stability of the slopes is a problem that, added to anthropic factors and population settlements, currently generate not only material but also human losses. Therefore, the evaluation of threat by mass movements has become a first order problem. However, one of the aspects that presents the greatest uncertainty in these evaluations is the effect of soil saturation. This paper presents a methodology for evaluating the effect of rainfall by estimating the probability of soil saturation using the Richards equation and the first order and second moment method-FOSM. The methodology was applied considering two residual soils from the area of north-western Colombia named Aburra valley. For this purpose, a characterization of each material was made, evaluating the variability of shear strength parameters and hydraulic parameters. Subsequently, infiltration models were made using the Richards equation with a historical rain event that occurred between October 27 and November 13, 2010, which exceeded the failure thresholds established for the Aburra Valley and generated several landslides. The advance of the wetting front was evaluated, and the probability of saturation was determined. It was found that, in all the evaluated soils, full saturation reaches depths between 600 and 6000 mm and the probability of saturation is greater in soils from Stock de Altavista that report a lesser values of air entry suction. The mean values of φ b varies between 1.3° and 6.5° for soils from Stock de Altavista. © Published under licence by IOP Publishing Ltd.
URI
http://hdl.handle.net/11407/6091
Collections
  • Indexados Scopus [1069]
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMSee Statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com