Show simple item record

dc.creatorMedina L.Y.
dc.creatorNúñez-Zarur F.
dc.creatorPérez-Torres J.F.
dc.date2019
dc.date.accessioned2021-02-05T14:59:35Z
dc.date.available2021-02-05T14:59:35Z
dc.identifier.issn207608
dc.identifier.urihttp://hdl.handle.net/11407/6096
dc.descriptionNonadiabatic effects in the nuclear dynamics of the H 2 + molecular ion, initiated by ionization of the H 2 molecule, is studied by means of the probability and flux distribution functions arising from the space fractional Schrödinger equation. In order to solve the fractional Schrödinger eigenvalue equation, it is shown that the quantum Riesz fractional derivative operator fulfills the usual properties of the quantum momentum operator acting on the bra and ket vectors of the abstract Hilbert space. Then, the fractional Fourier grid Hamiltonian method is implemented and applied to molecular vibrations. The eigenenergies and eigenfunctions of the fractional Schrödinger equation describing the vibrational motion of the H 2 + and D 2 + molecules are analyzed. In particular, it is shown that the position-momentum Heisenberg's uncertainty relationship holds independently of the fractional Schrödinger equation. Finally, the probability and flux distributions are presented, demonstrating the applicability of the fractional Schrödinger equation for taking into account nonadiabatic effects. © 2019 Wiley Periodicals, Inc.
dc.language.isoeng
dc.publisherJohn Wiley and Sons Inc.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85064484900&doi=10.1002%2fqua.25952&partnerID=40&md5=5de1c1ba9780c5a24817aa5427682249
dc.sourceInternational Journal of Quantum Chemistry
dc.titleNonadiabatic effects in the nuclear probability and flux densities through the fractional Schrödinger equation
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.identifier.doi10.1002/qua.25952
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationMedina, L.Y., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationNúñez-Zarur, F., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationPérez-Torres, J.F., Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombia
dc.relation.referencesLandau, L.D., (1932) Phys Z Sowjetunion, 2, p. 46
dc.relation.referencesZener, C., (1932) Proc R Soc London A, 137, p. 696
dc.relation.referencesTully, J.C., (2012) J Chem Phys, 137, p. 22A301
dc.relation.referencesDiestler, D.J., Manz, J., Pérez-Torres, J.F., (2018) Chem Phys, 514, p. 67
dc.relation.referencesPérez-Torres, J.F., (2013) Phys Rev A, 87, p. 062512
dc.relation.referencesHermann, G., PAulus, B., Pérez-Torres, J.F., Pohl, V., (2014) Phys Rev A, 89, p. 052504
dc.relation.referencesLaskin, N., (2000) Phys Rev E, 62, p. 3135
dc.relation.referencesRiesz, M., (1949) Acta Math, 81, p. 1
dc.relation.referencesLaskin, N., (2002) Phys Rev E, 66. , 056108
dc.relation.referencesLenzi, E.K., Oliveira, B.F., Astrath, N.G.C., Malacarne, L.C., Mendes, R.S., Baesso, M.L., (2008) Eur Phys J B, 62, p. 155
dc.relation.referencesStickler, B.A., (2013) Phys Rev E, 88. , 012120
dc.relation.referencesLonghi, S., (2015) Opt Lett, 40, p. 1117
dc.relation.referencesZhang, Y., Liu, X., Belić, M.R., Zhong, W., Zhang, Y., Xiao, M., (2015) Phys Rev Lett, 115. , 180403
dc.relation.referencesHermann, R., (2013) Int J Mod Phys B, 27. , 1350019
dc.relation.referencesDong, J., Xu, M., (2007) J Math Phys, 48. , 072105
dc.relation.referencesAmore, P., Fernández, F.M., Hofmann, C.P., Sáenz, R., (2010) J Math Phys, 51. , 122101
dc.relation.referencesBhrawy, A.H., Abdelkawy, M.A., (2015) J Comput Phys, 294, p. 462
dc.relation.referencesBhrawy, A.H., Zaky, M.A., (2017) Appl Num Math, 111, p. 197
dc.relation.referencesMarston, C.C., Balint-Kurti, G.G., (1989) J Chem Phys, 91, p. 3571
dc.relation.referencesTannor, D.J., (2007) Introduction to Quantum Mechanics, A Time-Dependent Perspective, , University Science Books, Sausalito, California
dc.relation.referencesLayton, E., Chu, S.I., (1991) Chem Phys Lett, 186, p. 100
dc.relation.referencesYao, G., Chu, S.I., (1992) Phys Rev A, 45, p. 6735
dc.relation.referencesBrau, F., Semay, C., (1998) J of Comp Phys, 139, p. 127
dc.relation.referencesStare, J., Balint-Kurti, G.G., (2003) J Phys Chem A, 107, p. 7204
dc.relation.referencesSarkar, P., Ahamed, B., (2011) Int J Quantum Chem, 111, p. 2268
dc.relation.referencesWei, Y., (2015) Int J Theor Math Phys, 5. , 58
dc.relation.referencesDirac, P.A.M., (1939) Math Proc Cambridge Philos Soc, 35, p. 416
dc.relation.referencesDirac, P.A.M., (1958) The Principles of Quantum Mechanics, , 4th, ed.,, Clareondon, Oxford
dc.relation.referencesKarr, J.P., Hilico, L., (2006) J Phys B: At Mol Opt Phys, 39, p. 2095
dc.relation.referencesEpstein, S.T., (1966) J Chem Phys, 44, p. 836
dc.relation.referenceshttp:physics.nist.gov/cuu/Constants, CODATA international recommended values of the fundamental physical constants;, (accessed March 2019)
dc.relation.referencesWei, Y., (2016) Phys Rev E, 93, p. 066103
dc.relation.referencesSchrödinger, E., (1926) Ann Phys (Leipzig), 81, p. 109
dc.relation.referencesManz, J., Pérez-Torres, J.F., Yang, Y., (2013) Phys Rev Lett, 111. , 153004
dc.relation.referencesAlbert, J., Hader, K., Engel, V., (2017) J Chem Phys, 147. , 241101
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record