dc.creator | Medina L.Y. | |
dc.creator | Núñez-Zarur F. | |
dc.creator | Pérez-Torres J.F. | |
dc.date | 2019 | |
dc.date.accessioned | 2021-02-05T14:59:35Z | |
dc.date.available | 2021-02-05T14:59:35Z | |
dc.identifier.issn | 207608 | |
dc.identifier.uri | http://hdl.handle.net/11407/6096 | |
dc.description | Nonadiabatic effects in the nuclear dynamics of the H 2 + molecular ion, initiated by ionization of the H 2 molecule, is studied by means of the probability and flux distribution functions arising from the space fractional Schrödinger equation. In order to solve the fractional Schrödinger eigenvalue equation, it is shown that the quantum Riesz fractional derivative operator fulfills the usual properties of the quantum momentum operator acting on the bra and ket vectors of the abstract Hilbert space. Then, the fractional Fourier grid Hamiltonian method is implemented and applied to molecular vibrations. The eigenenergies and eigenfunctions of the fractional Schrödinger equation describing the vibrational motion of the H 2 + and D 2 + molecules are analyzed. In particular, it is shown that the position-momentum Heisenberg's uncertainty relationship holds independently of the fractional Schrödinger equation. Finally, the probability and flux distributions are presented, demonstrating the applicability of the fractional Schrödinger equation for taking into account nonadiabatic effects. © 2019 Wiley Periodicals, Inc. | |
dc.language.iso | eng | |
dc.publisher | John Wiley and Sons Inc. | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064484900&doi=10.1002%2fqua.25952&partnerID=40&md5=5de1c1ba9780c5a24817aa5427682249 | |
dc.source | International Journal of Quantum Chemistry | |
dc.title | Nonadiabatic effects in the nuclear probability and flux densities through the fractional Schrödinger equation | |
dc.type | Article | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.identifier.doi | 10.1002/qua.25952 | |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.affiliation | Medina, L.Y., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia | |
dc.affiliation | Núñez-Zarur, F., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia | |
dc.affiliation | Pérez-Torres, J.F., Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombia | |
dc.relation.references | Landau, L.D., (1932) Phys Z Sowjetunion, 2, p. 46 | |
dc.relation.references | Zener, C., (1932) Proc R Soc London A, 137, p. 696 | |
dc.relation.references | Tully, J.C., (2012) J Chem Phys, 137, p. 22A301 | |
dc.relation.references | Diestler, D.J., Manz, J., Pérez-Torres, J.F., (2018) Chem Phys, 514, p. 67 | |
dc.relation.references | Pérez-Torres, J.F., (2013) Phys Rev A, 87, p. 062512 | |
dc.relation.references | Hermann, G., PAulus, B., Pérez-Torres, J.F., Pohl, V., (2014) Phys Rev A, 89, p. 052504 | |
dc.relation.references | Laskin, N., (2000) Phys Rev E, 62, p. 3135 | |
dc.relation.references | Riesz, M., (1949) Acta Math, 81, p. 1 | |
dc.relation.references | Laskin, N., (2002) Phys Rev E, 66. , 056108 | |
dc.relation.references | Lenzi, E.K., Oliveira, B.F., Astrath, N.G.C., Malacarne, L.C., Mendes, R.S., Baesso, M.L., (2008) Eur Phys J B, 62, p. 155 | |
dc.relation.references | Stickler, B.A., (2013) Phys Rev E, 88. , 012120 | |
dc.relation.references | Longhi, S., (2015) Opt Lett, 40, p. 1117 | |
dc.relation.references | Zhang, Y., Liu, X., Belić, M.R., Zhong, W., Zhang, Y., Xiao, M., (2015) Phys Rev Lett, 115. , 180403 | |
dc.relation.references | Hermann, R., (2013) Int J Mod Phys B, 27. , 1350019 | |
dc.relation.references | Dong, J., Xu, M., (2007) J Math Phys, 48. , 072105 | |
dc.relation.references | Amore, P., Fernández, F.M., Hofmann, C.P., Sáenz, R., (2010) J Math Phys, 51. , 122101 | |
dc.relation.references | Bhrawy, A.H., Abdelkawy, M.A., (2015) J Comput Phys, 294, p. 462 | |
dc.relation.references | Bhrawy, A.H., Zaky, M.A., (2017) Appl Num Math, 111, p. 197 | |
dc.relation.references | Marston, C.C., Balint-Kurti, G.G., (1989) J Chem Phys, 91, p. 3571 | |
dc.relation.references | Tannor, D.J., (2007) Introduction to Quantum Mechanics, A Time-Dependent Perspective, , University Science Books, Sausalito, California | |
dc.relation.references | Layton, E., Chu, S.I., (1991) Chem Phys Lett, 186, p. 100 | |
dc.relation.references | Yao, G., Chu, S.I., (1992) Phys Rev A, 45, p. 6735 | |
dc.relation.references | Brau, F., Semay, C., (1998) J of Comp Phys, 139, p. 127 | |
dc.relation.references | Stare, J., Balint-Kurti, G.G., (2003) J Phys Chem A, 107, p. 7204 | |
dc.relation.references | Sarkar, P., Ahamed, B., (2011) Int J Quantum Chem, 111, p. 2268 | |
dc.relation.references | Wei, Y., (2015) Int J Theor Math Phys, 5. , 58 | |
dc.relation.references | Dirac, P.A.M., (1939) Math Proc Cambridge Philos Soc, 35, p. 416 | |
dc.relation.references | Dirac, P.A.M., (1958) The Principles of Quantum Mechanics, , 4th, ed.,, Clareondon, Oxford | |
dc.relation.references | Karr, J.P., Hilico, L., (2006) J Phys B: At Mol Opt Phys, 39, p. 2095 | |
dc.relation.references | Epstein, S.T., (1966) J Chem Phys, 44, p. 836 | |
dc.relation.references | http:physics.nist.gov/cuu/Constants, CODATA international recommended values of the fundamental physical constants;, (accessed March 2019) | |
dc.relation.references | Wei, Y., (2016) Phys Rev E, 93, p. 066103 | |
dc.relation.references | Schrödinger, E., (1926) Ann Phys (Leipzig), 81, p. 109 | |
dc.relation.references | Manz, J., Pérez-Torres, J.F., Yang, Y., (2013) Phys Rev Lett, 111. , 153004 | |
dc.relation.references | Albert, J., Hader, K., Engel, V., (2017) J Chem Phys, 147. , 241101 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/article | |