Mostrar el registro sencillo del ítem

dc.creatorTiutiunnyk A.
dc.creatorDuque C.A.
dc.creatorCaro-Lopera F.J.
dc.creatorMora-Ramos M.E.
dc.creatorCorrea J.D.
dc.date2019
dc.date.accessioned2021-02-05T14:59:37Z
dc.date.available2021-02-05T14:59:37Z
dc.identifier.issn13869477
dc.identifier.urihttp://hdl.handle.net/11407/6099
dc.descriptionThe electronic and interband optical properties of vertically coupled stacked graphene quantum dots are investigated using the tight-binding method. Both zigzag and armchair edge configurations are taken into account. In particular, the effect of the geometrical shape (triangular or circle-like) and, most prominently, of the angle of twisting between layers is mainly addressed. The optical response is analyzed from the calculated imaginary part of the dielectric function. It is found that the interband absorption threshold is highly dependent on the dot size and geometry: For armchair triangular bilayer graphene dots the optical gap exhibits a moderate increase for smaller angles of twisting, and the structure behaves as an intermediate to a wide gap semiconductor; whereas zigzag triangular bilayer graphene dots are small gap systems in which the twisting causes the appearance of zero-gap states associated with the variation of HOMO and LUMO states resulting from the breaking of zero-energy degeneracy. In the latter case, it is shown that the low-energy transitions between those states are responsible for the main optical response of the structures which indicates possible applications in the THz optoelectronics. Circular dots are chosen in commensurable configurations and also show stronger low-energy absorption thresholds. A particular feature appearing in this case is the presence of Bravais-Moiré patterns in the two-dimensional probability density distributions for large enough dot radii. © 2019 Elsevier B.V.
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85063985896&doi=10.1016%2fj.physe.2019.03.028&partnerID=40&md5=a01eeaa51625332c7bddfbbda946703e
dc.sourcePhysica E: Low-Dimensional Systems and Nanostructures
dc.titleOpto-electronic properties of twisted bilayer graphene quantum dots
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.identifier.doi10.1016/j.physe.2019.03.028
dc.relation.citationvolume112
dc.relation.citationstartpage36
dc.relation.citationendpage48
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationTiutiunnyk, A., Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos CP 62209, Mexico, Instituto de Alta Investigación, CEDENNA, Universidad de Tarapacá, Casilla 7D, Arica, Chile
dc.affiliationDuque, C.A., Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
dc.affiliationCaro-Lopera, F.J., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationMora-Ramos, M.E., Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos CP 62209, Mexico
dc.affiliationCorrea, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.relation.referencesGeim, A.K., Graphene: status and prospects (2009) Science, 324, pp. 1530-1534
dc.relation.referencesCastro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K., The electronic properties of graphene (2009) Rev. Mod. Phys., 81, pp. 109-162
dc.relation.referencesWu, Y.H., Yu, T., Shen, Z.X., Two-dimensional carbon nanostructures: fundamental properties, synthesis, characterization, and potential applications (2010) J. Appl. Phys., 108, p. 071301
dc.relation.referencesRao, C.N.R., Sood, A.K., Subrahmanyam, K.S., Govindaraj, A., Graphene: the new two-dimensional nanomaterial (2009) Angew. Chem. Int. Ed., 48, pp. 7752-7777
dc.relation.referencesShen, J., Zhu, Y., Yang, X., Li, C., Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices (2012) Chem. Commun., 48, p. 3686
dc.relation.referencesBak, S., Kim, D., Lee, H., Graphene quantum dots and their possible energy applications: a review (2016) Curr. Appl. Phys., 16, pp. 1192-1201
dc.relation.referencesChen, W., Lv, G., Hu, W., Li, D., Chen, S., Dai, Z., Synthesis and applications of graphene quantum dots: a review (2018) Nanotechnol. Rev., 7, pp. 157-185
dc.relation.referencesBacon, M., Bradley, S.J., Nann, T., Graphene quantum dots (2013) Part. Part. Syst. Char., 31, pp. 415-428
dc.relation.referencesLi, L., Wu, G., Yang, G., Peng, J., Zhao, J., Zhu, J.-J., Focusing on luminescent graphene quantum dots: current status and future perspectives (2013) Nanoscale, 5, p. 4015
dc.relation.referencesQi, B.-P., Hu, H., Bao, L., Zhang, Z.-L., Tang, B., Peng, Y., Wang, B.-S., Pang, D.-W., An efficient edge-functionalization method to tune the photoluminescence of graphene quantum dots (2015) Nanoscale, 7, pp. 5969-5973
dc.relation.referencesChiu, K.L., Connolly, M.R., Cresti, A., Griffiths, J.P., Jones, G.A.C., Smith, C.G., Magnetic-field-induced charge redistribution in disordered graphene double quantum dots (2015) Phys. Rev. B, 92, p. 155408
dc.relation.referencesYamijala, S.S., Bandyopadhyay, A., Pati, S.K., Nitrogen-doped graphene quantum dots as possible substrates to stabilize planar conformer of au20 over its tetrahedral conformer: a systematic DFT study (2014) J. Phys. Chem. C, 118, pp. 17890-17894
dc.relation.referencesZhao, M., Yang, F., Xue, Y., Xiao, D., Guo, Y., Effects of edge oxidation on the stability and half-metallicity of graphene quantum dots (2013) ChemPhysChem, 15, pp. 157-164
dc.relation.referencesKittiratanawasin, L., Hannongbua, S., The effect of edges and shapes on band gap energy in graphene quantum dots (2016) Integr. Ferroelectr., 175, pp. 211-219
dc.relation.referencesDas, R., Dhar, N., Bandyopadhyay, A., Jana, D., Size dependent magnetic and optical properties in diamond shaped graphene quantum dots: a DFT study (2016) J. Phys. Chem. Solids, 99, pp. 34-42
dc.relation.referencesLiang, F.X., Jiang, Z.T., Lv, Z.T., Zhang, H.Y., Li, S., Energy levels of double triangular graphene quantum dots (2014) J. Appl. Phys., 116, p. 123706
dc.relation.referencesBasak, T., Chakraborty, H., Shukla, A., Theory of linear optical absorption in diamond-shaped graphene quantum dots (2015) Phys. Rev. B, 92, p. 205404
dc.relation.referencesDong, Q.-R., Liu, C.-X., The optical selection rules of a graphene quantum dot in external electric fields (2017) RSC Adv., 7, pp. 22771-22776
dc.relation.referencesBugajny, P., Szulakowska, L., Jaworowski, B., Potasz, P., Optical properties of geometrically optimized graphene quantum dots (2017) Phys. E Low-dimens. Syst. Nanostruct., 85, pp. 294-301
dc.relation.referencesFeng, J., Dong, H., Yu, L., Dong, L., The optical and electronic properties of graphene quantum dots with oxygen-containing groups: a density functional theory study (2017) J. Mater. Chem. C, 5, pp. 5984-5993
dc.relation.referencesGao, F., Yang, C.-L., Wang, M.-S., Ma, X.-G., Computational studies on the absorption enhancement of nanocomposites of tetraphenylporphyrin and graphene quantum dot as sensitizers in solar cell (2017) J. Mater. Sci., 53 (7), pp. 5140-5150
dc.relation.referencesZarenia, M., Chaves, A., Farias, G.A., Peeters, F.M., Energy levels of triangular and hexagonal graphene quantum dots: a comparative study between the tight-binding and Dirac equation approach (2011) Phys. Rev. B, 84, p. 245403
dc.relation.referencesda Costa, D.R., Zarenia, M., Chaves, A., Farias, G.A., Peeters, F.M., Energy levels of bilayer graphene quantum dots (2015) Phys. Rev. B, 92, p. 115437
dc.relation.referencesEich, M., Pisoni, R., Pally, A., Overweg, H., Kurzmann, A., Lee, Y., Rickhaus, P., Ihn, T., Coupled quantum dots in bilayer graphene (2018) Nano Lett., 18, pp. 5042-5048
dc.relation.referencesCarr, S., Massatt, D., Fang, S., Cazeaux, P., Luskin, M., Kaxiras, E., Twistronics: manipulating the electronic properties of two-dimensional layered structures through their twist angle (2017) Phys. Rev. B, 95, p. 075420
dc.relation.referencesSboychakov, A.O., Rakhmanov, A.L., Rozhkov, A.V., Nori, F., Electronic spectrum of twisted bilayer graphene (2015) Phys. Rev. B, 92, p. 075402
dc.relation.referencesDai, S., Xiang, Y., Srolovitz, D., Twisted bilayer graphene: moiré with a twist (2016) Nano Lett., 16, pp. 5923-5927
dc.relation.referencesPatel, H., Havener, R.W., Brown, L., Liang, Y., Yang, L., Park, J., Graham, M.W., Tunable optical excitations in twisted bilayer graphene form strongly bound excitons (2015) Nano Lett., 15, pp. 5932-5937
dc.relation.referencesLiao, L., Wang, H., Peng, H., Yin, J., Koh, A.L., Chen, Y., Xie, Q., Liu, Z., Van hove singularity enhanced photochemical reactivity of twisted bilayer graphene (2015) Nano Lett., 15, pp. 5585-5589
dc.relation.referencesOrlof, A., Shylau, A.A., Zozoulenko, I.V., Electron-electron interactions in graphene field-induced quantum dots in a high magnetic field (2015) Phys. Rev. B, 92, p. 075431
dc.relation.referencesMirzakhani, M., Zarenia, M., Vasilopoulos, P., Peeters, F.M., Electrostatically confined trilayer graphene quantum dots (2017) Phys. Rev. B, 95, p. 155434
dc.relation.referencesda Costa, D., Zarenia, M., Chaves, A., Farias, G., Peeters, F., Analytical study of the energy levels in bilayer graphene quantum dots (2014) Carbon, 78, pp. 392-400
dc.relation.referencesda Costa, D.R., Zarenia, M., Chaves, A., Farias, G.A., Peeters, F.M., Magnetic field dependence of energy levels in biased bilayer graphene quantum dots (2016) Phys. Rev. B, 93, p. 085401
dc.relation.referencesMirzakhani, M., Zarenia, M., Ketabi, S.A., da Costa, D.R., Peeters, F.M., Energy levels of hybrid monolayer-bilayer graphene quantum dots (2016) Phys. Rev. B, 93, p. 165410
dc.relation.referencesCaro-Lopera, F.J., Correa-Abad, J.D., Bravais-Moiré Theory and Applications (2017), Tech. rep. University of Medellín
dc.relation.referencesXhie, J., Sattler, K., Ge, M., Venkateswaran, N., Giant and supergiant lattices on graphite (1993) Phys. Rev. B, 47, pp. 15835-15841
dc.relation.referencesReich, S., Thomsen, C., Maultzsch, J., Carbon Nanotubes: Basic Concepts and Physical Properties (2004), Wiley-VCH
dc.relation.referencesGüçlü, A.D., Potasz, P., Korkusinski, M., Hawrylak, P., Graphene Quantum Dots (NanoScience and Technology) (2014), Springer
dc.relation.referencesJelinek, R., Carbon Quantum Dots: Synthesis, Properties and Applications (Carbon Nanostructures) (2016), Springer
dc.relation.referencesShafraniuk, S., Graphene: Fundamentals, Devices, and Applications (2015), Pan Stanford
dc.relation.referencesMunárriz Arrieta, J., Modelling of Plasmonic and Graphene Nanodevices (Springer Theses) (2014), Springer
dc.relation.referencesCorrea, J.D., Pacheco, M., Suarez Morell, E., Optical absorption spectrum of rotated trilayer graphene (2014) J. Mater. Sci., 49, pp. 642-647
dc.relation.referencesGüçlü, A.D., Potasz, P., Hawrylak, P., Zero-energy states of graphene triangular quantum dots in a magnetic field (2013) Phys. Rev. B, 88, p. 155429
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem