Show simple item record

dc.creatorEcheverri-Londoño C.A.
dc.creatorGonzález-Fernández A.E.
dc.descriptionSeveral noise propagation models used to calculate the noise produced by wind turbines have been reported. However, these models do not accurately predict sound pressure levels. Most of them have been developed to estimate the noise produced by industries, in which wind speeds are less than 5 m/s, and conditions favor its spread. To date, very few models can be applied to evaluate the propagation of sound from wind turbines and most of these yield inaccurate results. This study presents a comparison between noise levels that were estimated using the prediction method established in ISO 9613 Part 2 and measured levels of noise from wind turbines that are part of a wind farm currently in operation. Differences of up to 56.5 dBZ, with a median of 29.6 dBZ, were found between the estimated sound pressure levels and measured levels. The residual sound pressure levels given by standard ISO 9613 Part 2 for the wind turbines is larger for high frequencies than those for low frequencies. When the wide band equivalent continuous sound pressure level is expressed in dBA, the residual varies between -4.4 dBA and 37.7 dBA, with a median of 20.5 dBA. © 2019 Revista Facultad de Ingenieria.Hay muchos modelos de propagación de ruido que se utilizan para calcular el ruido proveniente de los aerogeneradores. Sin embargo, fallan en la precisión con que pueden predecir los niveles de presión sonora. La mayoría de estos modelos han sido desarrollados para estimar el ruido proveniente de las industrias, con velocidades del viento inferiores a 5 m/s y condiciones favorables a su propagación. Hasta ahora hay muy pocos modelos que se puedan aplicar para la propagación del sonido proveniente de los aerogeneradores y la mayoría de ellos arrojan resultados poco precisos. En este artículo se presenta una comparación entre los niveles de ruido estimados a través del método de predicción establecido en la norma ISO 9613 Parte 2 y los niveles de ruido medidos proveniente de los aerogeneradores instalados en un parque eólico en funcionamiento. Se encontraron diferencias entre los niveles de presión sonora estimados y medidos de hasta 56.5 dBZ, con una mediana de 29.6 dBZ. El nivel de presión sonora residual arrojado por la norma ISO 9613 Parte 2 para los aerogeneradores es mayor para las frecuencias altas que para las frecuencias bajas. © 2019 Revista Facultad de Ingenieria.
dc.publisherUniversidad de Antioquia
dc.sourceRevista Facultad de Ingenieria
dc.titlePrediction of noise from wind turbines: A theoretical and experimental study
dc.publisher.programIngeniería Ambientalspa
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationEcheverri-Londoño, C.A., Departamento de Ingeniería Ambiental, Universidad de Medellín, Carrera 87 # 30-65. C. P, Medellín, 050026, Colombia
dc.affiliationGonzález-Fernández, A.E., Departamento de Ingeniería Ambiental, Universidad de la República, Julio Herrera y Reissig 565. C. P. 11.200, Montevideo, Uruguay
dc.relation.referencesAttenuation of sound during propagation outdoors: General method of calculation (1996), ISO 9613 Part 2
dc.relation.referencesDickinson, P.J., A pragmatic view of a wind turbine noise standard (2009) Acoustics, Adelaide, Australia, pp. 1-8
dc.relation.referencesvan den Berg, G., The sound of high winds: The effect of atmospheric stability on wind turbine sound and microphone noise (2006), PhD. dissertation, University of Groningen, Groningen, Netherlands
dc.relation.referencesBass, J.H., Bullmore, A.J., Sloth, E., Development of a wind farm noise propagation prediction model (1998) The European Commision, Brussels, Belgium, Tech. Rep, , May
dc.relation.referencesPedersen, E., Forssén, J., Waye, K.P., Human perception of sound from wind turbines (2010) Swedish Environmental Protection Agency, , Stockholm, Sweden, Tech. Rep. 6370, Jun
dc.relation.referencesWondollek, M., Sound from wind turbines in forest areas (2009), Uppsala Universitet, Uppsala, Sweden, Tech. Rep., Jan
dc.relation.referencesFriman, M., Directivity of sound from wind turbines. a study on the horizontal sound radiation pattern from a wind turbine (2011), M.S. thesis, The Marcus Wallenberg Laboratory for Sound and Vibration Research, Stockholm, Sweden
dc.relation.referencesHoogzaad, S., Measuring and calculating turbine noise immission in the netherlands (2009) Wind expert meeting sound propagation models, pp. 1-18. , Stockholm, Sweden
dc.relation.referencesKaliski, K., Duncan, E., Wilson, D.K., Vecherin, S., Improving predictions of wind turbine noise using pe modeling (2011) 158th Meeting Acoustical Society of America/NOISE-CON, pp. 1-13. , Portland, USA
dc.relation.referencesWalpole, R.E., Myers, R.H., Myers, S.L., Probability and statistics for engineers (1999), 6th ed. Naucalpan, Mexico: Prentice Hall
dc.relation.referencesThorne, B., The problems with "noise numbers" for wind farm noise assessment (2011) Bulletin of Science Technology and Society, 31 (4), pp. 1-262. , Jul
dc.relation.referencesMartín, B., Acoustic impact of wind farms and their evolution (2008), pp. 1-11. , Acústica, Coimbra, Portugal
dc.relation.referencesMøller, H., Pedersen, C.S., Low-frequency noise from large wind turbines (2011) Journal of the Acoustical Society of America, 129 (6), pp. 3727-3744. , Jun

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record