dc.creator | Pérez M.H. | |
dc.creator | Vega L.P. | |
dc.creator | Zúñiga-Benítez H. | |
dc.creator | Peñuela G.A. | |
dc.date | 2018 | |
dc.date.accessioned | 2021-02-05T14:59:51Z | |
dc.date.available | 2021-02-05T14:59:51Z | |
dc.identifier.issn | 496979 | |
dc.identifier.uri | http://hdl.handle.net/11407/6127 | |
dc.description | A comparative study about the degradation of alachlor in aqueous solutions under different photocatalytic systems, including TiO2, TiO2/H2O2, and TiO2/Na2S2O8 heterogeneous photocatalysis, Fe2+/H2O2, Fe3+/H2O2, and UV radiation, was carried out. In this way, times for alachlor total removal and mineralization followed the order photo-Fenton < photocatalysis with persulfate < photo-Fenton-like < photocatalysis with hydrogen peroxide < photocatalysis with TiO2. Ferric chloride was used as ferric ion source under Fenton-like reactions. Oxidation with Fe2+/H2O2 was faster than treatment with Fe3+/H2O2, but under UV irradiation, degradation rates were similar, indicating that FeCl3 could be a good source of ferric ions for alachlor degradation. Reduction of the sample toxicity was much faster in the photo-Fenton process than in TiO2 process (50% mortality reduction in 180 min compared to around 400 min—Daphnia Pullex assays). In addition, evaluation of the nitrogen and chloride contained in the treated samples confirmed a 100% conversion of the N and Cl content in the pollutant molecule. Finally, some of the degradation by-products for pollutant removal using TiO2 photocatalysis were identified. © 2018, Springer Nature Switzerland AG. | |
dc.language.iso | eng | |
dc.publisher | Springer International Publishing | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055754808&doi=10.1007%2fs11270-018-3996-6&partnerID=40&md5=6b45922fc4a3afcd15540cfe302a579b | |
dc.source | Water, Air, and Soil Pollution | |
dc.title | Comparative Degradation of Alachlor Using Photocatalysis and Photo-Fenton | |
dc.type | Article | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Ingeniería Ambiental | spa |
dc.identifier.doi | 10.1007/s11270-018-3996-6 | |
dc.relation.citationvolume | 229 | |
dc.relation.citationissue | 11 | |
dc.publisher.faculty | Facultad de Ingenierías | spa |
dc.affiliation | Pérez, M.H., Departamento de Ingeniería Ambiental, Facultad de Ingeniería, Universidad de Medellín, Carrera 87 No 30-65, Medellín, Colombia | |
dc.affiliation | Vega, L.P., Grupo GDCON, Facultad de Ingeniería, Sede de Investigación Universitaria (SIU), Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia | |
dc.affiliation | Zúñiga-Benítez, H., Grupo GDCON, Facultad de Ingeniería, Sede de Investigación Universitaria (SIU), Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia, Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia | |
dc.affiliation | Peñuela, G.A., Grupo GDCON, Facultad de Ingeniería, Sede de Investigación Universitaria (SIU), Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia | |
dc.relation.references | Chu, W., Wong, C.C., Study of herbicide alachlor removal in a photocatalytic process through the examination of the reaction mechanism (2004) Industrial and Engineering Chemistry Research, 43 (17), pp. 5027-5031 | |
dc.relation.references | Cui, L., Cheng, F., Zhou, J., Behaviors and mechanism of Iron extraction from chloride solutions using undiluted Cyphos IL 101 (2015) Industrial and Engineering Chemistry Research, 54 (30), pp. 7534-7542 | |
dc.relation.references | Directive 2000/60/EC of the European Parliament and of the council of 23 October 2000 establishing a framework for community action in the field of water policy (2000) Official Journal of the European Parliament, 50 (September 1996), pp. 1-82 | |
dc.relation.references | Hapeman-Somich, C.J., Mineralization of Pesticide Degradation Products (1991) ACS Symposium Series, pp. 133-147. , https://doi.org/10.1021/bk-1991-0459.ch010, American Chemical Society, Washington, DC | |
dc.relation.references | Hatchard, C.G., Parker, C.A., A new sensitive chemical Actinometer. II. Potassium Ferrioxalate as a standard chemical Actinometer (1956) Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 235 (1203), pp. 518-536 | |
dc.relation.references | Huang, X., Hou, X., Jia, F., Song, F., Zhao, J., Zhang, L., Ascorbate-promoted surface Iron cycle for efficient heterogeneous Fenton Alachlor degradation with hematite nanocrystals (2017) ACS Applied Materials and Interfaces, 9 (10), pp. 8751-8758 | |
dc.relation.references | Katsumata, H., Kaneco, S., Suzuki, T., Ohta, K., Yobiko, Y., Photo-Fenton degradation of alachlor in the presence of citrate solution (2006) Journal of Photochemistry and Photobiology A: Chemistry, 180 (1-2), pp. 38-45 | |
dc.relation.references | Kumar, Y.B., Singh, N., Singh, S.B., Removal of herbicides mixture of atrazine, metribuzin, metolachlor and alachlor from water using granular carbon (2017) Indian Journal of Chemical Technology, 24 (4), pp. 400-404 | |
dc.relation.references | de Luna, M.D.G., Rivera, K.K.P., Suwannaruang, T., Wantala, K., Alachlor photocatalytic degradation over uncalcined Fe–TiO2 loaded on granular activated carbon under UV and visible light irradiation (2015) Desalination and Water Treatment, 57 (15), pp. 1-11 | |
dc.relation.references | Bahena, C.L., Martínez, S.S., Photodegradation of chlorbromuron, atrazine, and alachlor in aqueous systems under solar irradiation (2006) International Journal of Photoenergy, 2006, pp. 1-6 | |
dc.relation.references | Malato, S., Blanco, J., Maldonado, M.I., Fernández-Ibáñez, P., Campos, A., Optimising solar photocatalytic mineralisation of pesticides by adding inorganic oxidising species | |
dc.relation.references | application to the recycling of pesticide containers (2000) Applied Catalysis B: Environmental, 28 (3-4), pp. 163-174 | |
dc.relation.references | Pérez, M.H., Peñuela, G., Maldonado, M.I., Malato, O., Fernández-Ibáñez, P., Oller, I., Degradation of pesticides in water using solar advanced oxidation processes (2006) Applied Catalysis B: Environmental, 64 (3-4), pp. 272-281 | |
dc.relation.references | Pichat, P., Guillard, C., Amalric, L., Renard, A.-C., Plaidy, O., Assessment of the importance of the role of H2O2 and O2o−in the photocatalytic degradation of 1,2-dimethoxybenzene (1995) Solar Energy Materials and Solar Cells, 38 (1-4), pp. 391-399 | |
dc.relation.references | Potter, T., Carpenter, T., Occurrence of Alachlor environmental degradation products in groundwater (1995) Science, 29 (6), pp. 1557-1563 | |
dc.relation.references | Ritter, W.F., Pesticide contamination of ground water in the United States - A review (1990) Journal of Environmental Science and Health, Part B, 25 (1), pp. 1-29 | |
dc.relation.references | (2009) National Primary Drinking Water Regulations. Ground Water and Drinking Water, , https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations, Accessed 20 June 2018 | |
dc.relation.references | Wang, Q., Shao, Y., Gao, N., Chu, W., Deng, J., Shen, X., Degradation of alachlor with zero-valent iron activating persulfate oxidation (2016) Journal of the Taiwan Institute of Chemical Engineers, 63, pp. 379-385 | |
dc.relation.references | Wong, C.C., Chu, W., The Hydrogen Peroxide-Assisted Photocatalytic Degradation of Alachlor in TiO2Suspensions (2003) Environmental Science & Technology, 37 (10), pp. 2310-2316 | |
dc.relation.references | Wu, C.-H., Andy Hong, P.K., Jian, M.-Y., Decolorization of Reactive Red 2 in Fenton and Fenton-like systems: effects of ultrasound and ultraviolet irradiation (2012) Reaction Kinetics, Mechanisms and Catalysis, 106 (1), pp. 11-24 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/article | |