Mostrar el registro sencillo del ítem

dc.creatorPérez M.H.
dc.creatorVega L.P.
dc.creatorZúñiga-Benítez H.
dc.creatorPeñuela G.A.
dc.date2018
dc.date.accessioned2021-02-05T14:59:51Z
dc.date.available2021-02-05T14:59:51Z
dc.identifier.issn496979
dc.identifier.urihttp://hdl.handle.net/11407/6127
dc.descriptionA comparative study about the degradation of alachlor in aqueous solutions under different photocatalytic systems, including TiO2, TiO2/H2O2, and TiO2/Na2S2O8 heterogeneous photocatalysis, Fe2+/H2O2, Fe3+/H2O2, and UV radiation, was carried out. In this way, times for alachlor total removal and mineralization followed the order photo-Fenton < photocatalysis with persulfate < photo-Fenton-like < photocatalysis with hydrogen peroxide < photocatalysis with TiO2. Ferric chloride was used as ferric ion source under Fenton-like reactions. Oxidation with Fe2+/H2O2 was faster than treatment with Fe3+/H2O2, but under UV irradiation, degradation rates were similar, indicating that FeCl3 could be a good source of ferric ions for alachlor degradation. Reduction of the sample toxicity was much faster in the photo-Fenton process than in TiO2 process (50% mortality reduction in 180 min compared to around 400 min—Daphnia Pullex assays). In addition, evaluation of the nitrogen and chloride contained in the treated samples confirmed a 100% conversion of the N and Cl content in the pollutant molecule. Finally, some of the degradation by-products for pollutant removal using TiO2 photocatalysis were identified. © 2018, Springer Nature Switzerland AG.
dc.language.isoeng
dc.publisherSpringer International Publishing
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85055754808&doi=10.1007%2fs11270-018-3996-6&partnerID=40&md5=6b45922fc4a3afcd15540cfe302a579b
dc.sourceWater, Air, and Soil Pollution
dc.titleComparative Degradation of Alachlor Using Photocatalysis and Photo-Fenton
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambientalspa
dc.identifier.doi10.1007/s11270-018-3996-6
dc.relation.citationvolume229
dc.relation.citationissue11
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationPérez, M.H., Departamento de Ingeniería Ambiental, Facultad de Ingeniería, Universidad de Medellín, Carrera 87 No 30-65, Medellín, Colombia
dc.affiliationVega, L.P., Grupo GDCON, Facultad de Ingeniería, Sede de Investigación Universitaria (SIU), Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
dc.affiliationZúñiga-Benítez, H., Grupo GDCON, Facultad de Ingeniería, Sede de Investigación Universitaria (SIU), Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia, Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
dc.affiliationPeñuela, G.A., Grupo GDCON, Facultad de Ingeniería, Sede de Investigación Universitaria (SIU), Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
dc.relation.referencesChu, W., Wong, C.C., Study of herbicide alachlor removal in a photocatalytic process through the examination of the reaction mechanism (2004) Industrial and Engineering Chemistry Research, 43 (17), pp. 5027-5031
dc.relation.referencesCui, L., Cheng, F., Zhou, J., Behaviors and mechanism of Iron extraction from chloride solutions using undiluted Cyphos IL 101 (2015) Industrial and Engineering Chemistry Research, 54 (30), pp. 7534-7542
dc.relation.referencesDirective 2000/60/EC of the European Parliament and of the council of 23 October 2000 establishing a framework for community action in the field of water policy (2000) Official Journal of the European Parliament, 50 (September 1996), pp. 1-82
dc.relation.referencesHapeman-Somich, C.J., Mineralization of Pesticide Degradation Products (1991) ACS Symposium Series, pp. 133-147. , https://doi.org/10.1021/bk-1991-0459.ch010, American Chemical Society, Washington, DC
dc.relation.referencesHatchard, C.G., Parker, C.A., A new sensitive chemical Actinometer. II. Potassium Ferrioxalate as a standard chemical Actinometer (1956) Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 235 (1203), pp. 518-536
dc.relation.referencesHuang, X., Hou, X., Jia, F., Song, F., Zhao, J., Zhang, L., Ascorbate-promoted surface Iron cycle for efficient heterogeneous Fenton Alachlor degradation with hematite nanocrystals (2017) ACS Applied Materials and Interfaces, 9 (10), pp. 8751-8758
dc.relation.referencesKatsumata, H., Kaneco, S., Suzuki, T., Ohta, K., Yobiko, Y., Photo-Fenton degradation of alachlor in the presence of citrate solution (2006) Journal of Photochemistry and Photobiology A: Chemistry, 180 (1-2), pp. 38-45
dc.relation.referencesKumar, Y.B., Singh, N., Singh, S.B., Removal of herbicides mixture of atrazine, metribuzin, metolachlor and alachlor from water using granular carbon (2017) Indian Journal of Chemical Technology, 24 (4), pp. 400-404
dc.relation.referencesde Luna, M.D.G., Rivera, K.K.P., Suwannaruang, T., Wantala, K., Alachlor photocatalytic degradation over uncalcined Fe–TiO2 loaded on granular activated carbon under UV and visible light irradiation (2015) Desalination and Water Treatment, 57 (15), pp. 1-11
dc.relation.referencesBahena, C.L., Martínez, S.S., Photodegradation of chlorbromuron, atrazine, and alachlor in aqueous systems under solar irradiation (2006) International Journal of Photoenergy, 2006, pp. 1-6
dc.relation.referencesMalato, S., Blanco, J., Maldonado, M.I., Fernández-Ibáñez, P., Campos, A., Optimising solar photocatalytic mineralisation of pesticides by adding inorganic oxidising species
dc.relation.referencesapplication to the recycling of pesticide containers (2000) Applied Catalysis B: Environmental, 28 (3-4), pp. 163-174
dc.relation.referencesPérez, M.H., Peñuela, G., Maldonado, M.I., Malato, O., Fernández-Ibáñez, P., Oller, I., Degradation of pesticides in water using solar advanced oxidation processes (2006) Applied Catalysis B: Environmental, 64 (3-4), pp. 272-281
dc.relation.referencesPichat, P., Guillard, C., Amalric, L., Renard, A.-C., Plaidy, O., Assessment of the importance of the role of H2O2 and O2o−in the photocatalytic degradation of 1,2-dimethoxybenzene (1995) Solar Energy Materials and Solar Cells, 38 (1-4), pp. 391-399
dc.relation.referencesPotter, T., Carpenter, T., Occurrence of Alachlor environmental degradation products in groundwater (1995) Science, 29 (6), pp. 1557-1563
dc.relation.referencesRitter, W.F., Pesticide contamination of ground water in the United States - A review (1990) Journal of Environmental Science and Health, Part B, 25 (1), pp. 1-29
dc.relation.references(2009) National Primary Drinking Water Regulations. Ground Water and Drinking Water, , https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations, Accessed 20 June 2018
dc.relation.referencesWang, Q., Shao, Y., Gao, N., Chu, W., Deng, J., Shen, X., Degradation of alachlor with zero-valent iron activating persulfate oxidation (2016) Journal of the Taiwan Institute of Chemical Engineers, 63, pp. 379-385
dc.relation.referencesWong, C.C., Chu, W., The Hydrogen Peroxide-Assisted Photocatalytic Degradation of Alachlor in TiO2Suspensions (2003) Environmental Science & Technology, 37 (10), pp. 2310-2316
dc.relation.referencesWu, C.-H., Andy Hong, P.K., Jian, M.-Y., Decolorization of Reactive Red 2 in Fenton and Fenton-like systems: effects of ultrasound and ultraviolet irradiation (2012) Reaction Kinetics, Mechanisms and Catalysis, 106 (1), pp. 11-24
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem