Mostrar el registro sencillo del ítem

dc.creatorVélezMárquez M.I.
dc.creatorRaymond J.
dc.creatorBlessent D.
dc.creatorPhilippe M.
dc.creatorSimon N.
dc.creatorBour O.
dc.creatorLamarche L.
dc.date2018
dc.date.accessioned2021-02-05T14:59:54Z
dc.date.available2021-02-05T14:59:54Z
dc.identifier.issn19961073
dc.identifier.urihttp://hdl.handle.net/11407/6132
dc.descriptionThermal response tests are used to assess the subsurface thermal conductivity to design ground-coupled heat pump systems. Conventional tests are cumbersome and require a source of high power to heat water circulating in a pilot ground heat exchanger. An alternative test method using heating cable was verified in the field as an option to conduct this heat injection experiment with a low power source and a compact equipment. Two thermal response tests using heating cable sections and a continuous heating cable were performed in two experimental heat exchangers on different sites in Canada and France. The temperature evolution during the tests was monitored using submersible sensors and fiber optic distributed temperature sensing. Free convection that can occur in the pipe of the heat exchanger was evaluated using the Rayleigh number stability criterion. The finite and infinite line source equations were used to reproduce temperature variations along the heating cable sections and continuous heating cable, respectively. The thermal conductivity profile of each site was inferred and the uncertainly of the test was evaluated. A mean thermal conductivity 15% higher than that revealed with the conventional test was estimated with heating cable sections. The thermal conductivity evaluated using the continuous heating cable corresponds to the value estimated during the conventional test. The average uncertainly associated with the heating cable section test was 15.18%, while an uncertainty of 2.14% was estimated for the test with the continuous heating cable. According to the Rayleigh number stability criterion, significant free convection can occur during the heat injection period when heating cable sections are used. The continuous heating cable with a low power source is a promising method to perform thermal response tests and further tests could be carried out in deep boreholes to verify its applicability. © 2018 by the authors. Licensee MDPI, Basel, Switzerland.
dc.language.isoeng
dc.publisherMDPI AG
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85057875875&doi=10.3390%2fen11113059&partnerID=40&md5=6494682cc53a53305c7fafe48441ce4d
dc.sourceEnergies
dc.titleDistributed thermal response tests using a heating cable and fiber optic temperature sensing
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambientalspa
dc.publisher.programIngeniería en Energíaspa
dc.identifier.doi10.3390/en11113059
dc.relation.citationvolume11
dc.relation.citationissue11
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationVélezMárquez, M.I., Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, Québec, QC G1K 9A9, Canada
dc.affiliationRaymond, J., Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, Québec, QC G1K 9A9, Canada
dc.affiliationBlessent, D., Universidad de Medellín, Programa de Ingeniería Ambiental, Medellín, 050026, Colombia
dc.affiliationPhilippe, M., BRGM, Georesources Division, Orléans Cedex 2, 45060, France
dc.affiliationSimon, N., Univ Rennes, CNRS, Géosciences Rennes-UMR 6118, Rennes, F-35000, France
dc.affiliationBour, O., Univ Rennes, CNRS, Géosciences Rennes-UMR 6118, Rennes, F-35000, France
dc.affiliationLamarche, L., École de Technologie Supérieure, Département de Génie Mécanique, Montréal, QC H3C 1K3, Canada
dc.relation.referencesMarcotte, D., Pasquier, P., On the estimation of thermal resistance in borehole thermal conductivity test (2008) Renew. Energy, 33, pp. 2407-2415
dc.relation.referencesZhang, C., Guo, Z., Liu, Y., Cong, X., Peng, D., A review on thermal response test of ground-coupled heat pump systems (2014) Renew. Sustain. Energy Rev., 40, pp. 851-867
dc.relation.referencesMogensen, P., Fluid to duct wall heat transfer in duct system heat storages (1983) Proceedings of the International Conference on Subsurface Heat Storage in Theory and Practice, Stockholm, Sweden, 6-8 June
dc.relation.referencesEklöf, C., Gehlin, S., (1996) TED-A Mobile Equipment for Thermal Response Test: Testing and Evaluation, , Master's Thesis, Lulea University of Technology, Lulea, Sweden
dc.relation.referencesAustin, W.A., III, (1998) Development of An in Situ System for Measuring Ground Thermal Properties, , Master's Thesis, Oklahoma State University, Stillwater, OK, USA
dc.relation.referencesGehlin, S., (2002) Thermal Response Test Method Development and Evaluation, , Ph.D. Thesis, Lulea University of Techonology, Lulea, Sweden
dc.relation.referencesSanner, B., Hellström, G., Spitler, J., Gehlin, S., (2017) More Than 15 Years of Mobile Thermal Response Test-A Summary of Experiences and Prospects, , https://hvac.okstate.edu/sites/default/files/pubs/papers/2013/03-Sanner_et_al_2013_EGC_TRT-overview.pdf, (accessed on 3 May)
dc.relation.referencesSpitler, J.D., Gehlin, S., Thermal response testing for ground source heat pump systems-an historical review (2015) Renew. Sustain. Energy Rev., 50, pp. 1125-1137
dc.relation.referencesGehlin, S., (1998) Thermal Response Test: In Situ Measurements of Thermal Properties in Hard Rock, , Licentiate Dissertation, Lulea University of Technology, Lulea, Sweden
dc.relation.referencesRaymond, J., Therrien, R., Gosselin, L., Borehole temperature evolution during thermal response tests (2011) Geothermics, 40, pp. 69-78
dc.relation.referencesCarslaw, H.S., (1921) Introduction to the Mathematical Theory of the Conduction of Heat in Solids, , Macmillan: London, UK
dc.relation.referencesIngersoll, L.R., Plass, H.J., Theory of the ground heat pipe heat source for the heat pump (1948) Trans. Am. Soc. Heat. Vent. Eng., 20, pp. 119-122
dc.relation.referencesKavanaugh, S.P., (2001) Investigation of Methods for Determining Soil Formation Thermal Characteristics from Short Term Field Tests, , ASHRAE: Atlanta, GA, USA
dc.relation.referencesSanner, B., Hellström, G., Spitler, J., Gehlin, S., Thermal response test-current status and world-wide application (2005) Proceedings of the World Geothermal Congress, Antalya, Turkey, 24-29 April
dc.relation.referencesFujii, H., Okubo, H., Itoi, R., Thermal response tests using optical fiber thermometers (2006) GRC Trans., 30, pp. 545-551
dc.relation.referencesGehlin, S., Hellström, G., Influence on thermal response test by groundwater flow in vertical fractures in hard rock (2003) Renew. Energy, 28, pp. 2221-2238
dc.relation.referencesGustafsson, A.M., Westerlund, L., Heat extraction thermal response test in groundwater-filled borehole heat exchanger-investigation of the borehole thermal resistance (2011) Renew. Energy, 36, pp. 2388-2394
dc.relation.referencesBense, V.F., Read, T., Bour, O., Le Borgne, T., Coleman, T., Krause, S., Chalari, A., Selker, J.S., Distributed temperature sensing as a downhole tool in hydrogeology (2016) Water Resour. Res., 52, pp. 9259-9273
dc.relation.referencesFujii, H., Okubo, H., Nishi, K., Itoi, R., Ohyama, K., Shibata, K., An improved thermal response test for u-tube ground heat exchanger based on optical fiber thermometers (2009) Geothermics, 38, pp. 399-406
dc.relation.referencesBeier, R.A., Acuña, J., Mogensen, P., Palm, B., Vertical temperature profiles and borehole resistance in a u-tube borehole heat exchanger (2012) Geothermics, 44, pp. 23-32
dc.relation.referencesAcuña, J., Palm, B., Distributed thermal response tests on pipe-in-pipe borehole heat exchangers (2013) Appl. Energy, 109, pp. 312-320
dc.relation.referencesFreifeld, B.M., Finsterle, S., Onstott, T.C., Toole, P., Pratt, L.M., Ground surface temperature reconstructions: Using in situ estimates for thermal conductivity acquired with a fiber-optic distributed thermal perturbation sensor (2008) Geophys. Res. Lett., 35
dc.relation.referencesRaymond, J., Lamarche, L., Development and numerical validation of a novel thermal response test with a low power source (2014) Geothermics, 51, pp. 434-444
dc.relation.referencesRaymond, J., Lamarche, L., Malo, M., Field demonstration of a first thermal response test with a low power source (2015) Appl. Energy, 147, pp. 30-39
dc.relation.referencesRaymond, J., Robert, G., Therrien, R., Gosselin, L., A novel thermal response test using heating cables (2010) Proceedings of the World Geothermal Congress, Bali, Indonesia, 25-29 April
dc.relation.referencesRaymond, J., Colloquium 2016: Assessment of the subsurface thermal conductivity for geothermal applications (2018) Can. Geotech. J., 55, pp. 1209-1229
dc.relation.referencesSimon, F., (2016) Développement d'Une Approche Nouvelle pour les Tests de Réponse Thermique en Géothermie, , Master's Thesis, Ecole de technologie supérieure, Montréal, QC, Canada
dc.relation.referencesLove, A.J., Simmons, C.T., Nield, D.A., Double-diffusive convection in groundwater wells (2007) Water Resour. Res., 43
dc.relation.referencesRaymond, J., Ballard, J.-M., Koubikana Pambou, C.H., Field assessment of a ground heat exchanger performance with a reduced borehole diameter (2017) Proceedings of the 70th Canadian Geotechnical Conference and the 12th Joint CGS/IAH-CNC Groundwater Conference, Ottawa, ON, Canada, 1-4 October
dc.relation.referencesPhilippe, M., (2010) Development and Experimental Validation of Vertical and Horizontal Ground Heat Exchangers for Residential Buildings Heating, , Ph.D. Thesis, Ecole Nationale Supérieure des Mines de Paris, Paris, France
dc.relation.referencesVan De Giesen, N., Steele-Dunne, S.C., Jansen, J., Hoes, O., Hausner, M.B., Tyler, S., Selker, J., Double-ended calibration of fiber-optic raman spectra distributed temperature sensing data (2012) Sensors, 12, pp. 5471-5485
dc.relation.referencesLasdon, L.S., Waren, A.D., Jain, A., Ratner, M., Design and testing of a generalized reduced gradient code for nonlinear programming (1978) ACM Trans. Math. Softw., 4, pp. 34-50
dc.relation.referencesBeck, A.E., Anglin, F.M., Sass, J.H., Analysis of heat flow data-in situ thermal conductivity measurements (1971) Can. J. Earth Sci., 8, pp. 1-19
dc.relation.referencesPehme, P.E., Greenhouse, J.P., Parker, B.L., The active line source temperature logging technique and its application in fractured rock hydrogeology (2007) J. Environ. Eng. Geophys., 12, pp. 307-322
dc.relation.referencesWitte, H.J.L., Error analysis of thermal response tests (2013) Appl. Energy, 109, pp. 302-311
dc.relation.references(2018) Evaluation of Measurement Data-Supplement 1 to the Guide to the Expression of Uncertainty in Measurement, , https://www.bipm.org/utils/common/documents/jcgm/JCGM_101_2008_E.pdf, (accessed on 9 September)
dc.relation.referencesEllison, S., Williams, A., (2017) Eurachem/CITAC Guide: Quantifying Uncertainty in Analytical Measurement, , https://www.eurachem.org/images/stories/Guides/pdf/QUAM2012_P1.pdf, (accessed on 12 July)
dc.relation.referencesBallard, J.M., Koubikana, C., Raymond, J., (2016) Développement des Tests de Réponse Thermique Automatisés et Vérification de la Performance des Forages Géothermiques d'Un Diamètre de 4,5 Po, , Internal Report R1601
dc.relation.referencesInstitut National de la Recherche Scientifique: Qubec City, QC, Canada
dc.relation.referencesMaragna, C., (2014) Analyse d'Un Test de Réponse Thermique, , Internal Report
dc.relation.referencesDivision Géothermie, Bureau de Recherche Géologique et Minières de France: Orléans, France
dc.relation.referencesAsselin, S., (2014) Manuel d'Utilisation: Appareil de Lecture de Conductivité Thermique, , Internal Report
dc.relation.referencesInstitut National de la Recherche Scientifique: Quebec City, QC, Canada
dc.relation.referencesKlepikova, M., Roques, C., Loew, S., Selker, J., Improved characterization of groundwater flow in heterogeneous aquifers using granular polyacrylamide (pam) gel as temporary grout (2018) Water Resour. Res., 54, pp. 1410-1419
dc.relation.referencesBerthold, S., Resagk, C., Investigation of thermal convection in water columns using particle image velocimetry (2012) Exp. Fluids, 52, pp. 1465-1474
dc.relation.referencesWitte, H.J.L., Van Gelder, G., Spitler, J.D., In-situ thermal conductivity testing: A Dutch perspective (2002) ASHRAE Trans., 108, pp. 263-272
dc.relation.referencesRaymond, J., Therrien, R., Gosselin, L., Lefebvre, R., A review of thermal response test analysis using pumping test concepts (2011) Ground Water, 49, pp. 932-945
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem