Mostrar el registro sencillo del ítem

dc.creatorAzhmyakov V.
dc.creatorTrujillo L.A.G.
dc.creatorVargas M.G.F.
dc.date2018
dc.date.accessioned2021-02-05T15:00:08Z
dc.date.available2021-02-05T15:00:08Z
dc.identifier.isbn9781538684641
dc.identifier.urihttp://hdl.handle.net/11407/6151
dc.descriptionOur paper is devoted to a specific class of Optimal Control Problems (OCPs) in theoretical mechanics. We consider a minimax-Type optimal control processes governed by dynamic systems with randomly varying time delays. In particular we deals with the minimax-Type OCPs associated with a family of delayed Lagrange differential equations for the robot dynamics. The mathematical abstractions under consideration provide an adequate approach to many real-world robotic systems. Moreover, the proposed minimax dynamic optimization approach has a fundamental interpretation as a system robustness with respect to the unavoidable delays in robot control. The obtained convex structure of a linearized robot dynamics makes it possible to reduce the originally given delayed OCP to an auxiliary convex program in a suitable Euclidean space. The equivalent transformation we propose involves the wide range of effective algorithms for an effective computational treatment of the resulting convex OCP. We finally propose a concrete gradient based computational approach for the optimal control design of the controlled Lagrange-Type robot dynamics. © 2018 IEEE.
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85060988900&doi=10.1109%2fCCRA.2018.8588119&partnerID=40&md5=784831ef1ab100e01fc952bd06fc2a76
dc.source2018 IEEE 2nd Colombian Conference on Robotics and Automation, CCRA 2018
dc.titleOn the Optimal Robust Time-Delay Robot Dynamics
dc.typeConference Papereng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.identifier.doi10.1109/CCRA.2018.8588119
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationAzhmyakov, V., Department of Basic Sciences, Universidad de Medellin, Medellin, Colombia
dc.affiliationTrujillo, L.A.G., Department of Basic Sciences, Universidad de Medellin, Medellin, Colombia
dc.affiliationVargas, M.G.F., Facultad de Ingeniera, Universidad de Ibague Ibague, Colombia
dc.relation.referencesAliprantis, C.D., Border, K.C., (2006) Infinite Dimensional Analysis, , Springer, Berlin
dc.relation.referencesArmijo, L., Minimization of functions having Lipschitz continuous first partial derivatives (1966) Pacific Journal of Mathematics, 16, p. 13
dc.relation.referencesAscher, U.M., Pai, D.K., Cloutier, B.P., Forward dynamics, elimination methods, and formulation stiffness in robot simulation (1997) International Journal on Robotic Research, 16, pp. 749-758
dc.relation.referencesAzhmyakov, V., Raisch, J., Convex control systems and convex optimal control problems with constraints (2008) IEEE Transactions on Automatic Control, 53, pp. 993-998
dc.relation.referencesAzhmyakov, V., Basin, M., Reincke-Collon, C., Optimal LQ-Type switched control design for a class of linear systems with piecewise constant inputs (2014) Proceedings of the 19th IFAC World Congress, Cape Town, South Africa, pp. 6976-6981
dc.relation.referencesAzhmyakov, V., Cabrera Martinez, J., Poznyak, A., Optimal fixed-levels control for nonlinear systems with quadratic cost-functionals (2016) Optimal Control Applications and Methods, 37 (5), pp. 1035-1055
dc.relation.referencesAzhmyakov, V., Ahmed, A., Verriest, E.I., On the optimal control of systems evolving with state suprema (2016) Proceedings of the 55th IEEE Conference on Decision and Control, Las Vegas, USA, pp. 3617-3623
dc.relation.referencesAzhmyakov, V., Juarez, R., A first-order numerical approach to switchedmode systems optimization (2017) Nonlinear Analysis: Hybrid Systems, 25 (1), pp. 126-137
dc.relation.referencesAzhmyakov, V., (2018) A Relaxation Based Approach to Optimal Control of Hybrid and Switched Systems, , Elsevier, Massachusetts, USA, to appear in
dc.relation.referencesAzhmyakov, V., Verriest, E.I., Guzman Trujillo, L.A., Pickl, On the optimal control of multidimensional dynamic systems evolving with state suprema (2018) Proceedings of the 57th IEEE Conference on Decision and Control, Miami, USA, to Appear in
dc.relation.referencesAzhmyakov, V., Verriest, E.I., Guzman Trujillo, L.A., Lahaye, S., Delanoue, N., Robust optimal control of linear-Type dynamic systems with random delays (2018) Proceedings of the 9th IFAC Symposium on Robust Control Design, Florianopolis, Brazil, Pp
dc.relation.referencesBasin, M., Optimal control for linear systems with multiple time delays in control input (2006) IEEE Transactions on Automatic Control, 51, pp. 91-97
dc.relation.referencesBertsekas, D., (1995) Nonlinear Programming, , Athena Scientific, Belmont USA
dc.relation.referencesBetts, J., (2001) Practical Methods for Optimal Control Problems Using Nonlinear Programming, , SIAM, Philadelphia, USA
dc.relation.referencesBoltyanski, V., Martini, H., Soltan, V., (1999) Geometric Methods, Optimization Problems, , Kluver Academic Publishers Dordrecht
dc.relation.referencesBrady, M., Hollerbach, J.M., Johnson, T.L., Lozano-Perez, T., Mason, M.T., Motion, R., (1982) Planning and Control Cambridge MA: The, , MIT Press
dc.relation.referencesBryson, A.E., Ho, Y.-C., (1975) Applied Optimal Control Optimization, Estimation and Control, , CRC Press, New York
dc.relation.referencesDiekmann, O., Van Gils, S.A., Verduyn Lunel, S.M., Walther, H.O., (1995) Delay Equations Functional-, Complex-, and Nonlinear Analysis, , Springer, New York
dc.relation.referencesColanery, P., Middleton, R.H., Chen, Z., Caporale, D., Blanchini, F., Convexity of the cost functional in an optimal control problem for a class of positive switched systems (2014) Automatica, 50, pp. 1227-1234
dc.relation.referencesEgerstedt, M., Martin, C., Theoretic Splines, C., (2009) Optimal Control, Statistics, and Path Planning, , Princeton University Press, Princeton, USA
dc.relation.referencesFeatherstone, R., Fijany, A., A technique for analyzing constrained rigid-body systems and its application to the constraint force algorithm (1999) IEEE Transactions on Robotics and Automation, 15, pp. 1140-1144
dc.relation.referencesFleming, W.H., Rishel, R.W., (1975) Deterministic Stochastic Optimal Control Springer, , Verlag New York
dc.relation.referencesGoldstein, A.A., Convex programming in Hilbert space (1964) Bulletin of the American Mathematical Society, 70, pp. 709-710
dc.relation.referencesHale, J.K., Lunel, S.M.V., (1993) Introduction to Functional Differential Equations, , Springer-Verlag, New York
dc.relation.referencesHartung, F., Pituk, M., (2014) Recent Advances in Delay Differential and Difference Equations, , Springer, Basel
dc.relation.referencesHiriart-Urruty, J.B., Lemarchal, C., (1996) Convex Analysis, Minimization Algorithms 305 and 306, , Springer, Berlin, Germany
dc.relation.referencesIoffe, A.D., Tichomirov, V.M., (1979) Theory of Extremal Problems, , North Holland Amsterdam
dc.relation.referencesKhalil, H.K., (1996) Nonlinear Systems Prentice Hall, , Upper Saddle River
dc.relation.referencesLynch, K., (2018) Proceedings of the 2018 IEEE International Conference on Robotics and Automation IEEE
dc.relation.referencesMalek-Zavarei, M., Jamshidi, M., (1987) Time-Delay Systems Analysis, Optimization and Applications, , North Holland, Amsterdam
dc.relation.referencesMing Chen, I., Ang, M., (2017) Proceedings of the 2017 IEEE International Conference on Robotics and Automation IEEE
dc.relation.referencesOtrocol, D., Rus, I.A., Functional-differential equations with maxima via weakly Picard operators theory Bull. Math. Soc. Sci. Math, 51 (208), pp. 253-261
dc.relation.referencesPolak, E., (1997) Optimization Springer-Verlag, , New York USA
dc.relation.referencesPoznyak, A., Polyakov, A., Azhmyakov, V., (2014) Attractive Ellipsoids in Robust Control, Birkhäuser, Basel, Switzerland
dc.relation.referencesPytlak, R., (1999) Numerical Methods for Optimal Control Problems with State Constraints, , Springer, Berlin, Germany
dc.relation.referencesRockafellar, T., (1970) Convex Analysis Princeton, , University Press Princeton
dc.relation.referencesTeo, K.L., Goh, C.J., Wong, K.H., (1991) A Unifed Computational Approach to Optimal Control Problems, , Wiley New York
dc.relation.referencesThitsa, M., Williams, S., Verriest, E., Formal power series method for nonlinear time delay systems with analytic initial data (2015) Proceedings of the 54rd IEEE Conference on Decision and Control, Kita-KuOsaka, Japan, pp. 6478-6483
dc.relation.referencesVerriest, E.I., Dirr, G., Helmke, U., Mitesser, O., (2016) Explicitly Solvable Bilinear Optimal Control Problems with Applications in Ecology, In: Proceedings of the 22nd International Symposium on Mathematical Theory of Networks and Systems, Minneapolis, MN
dc.relation.referencesVerriest, E.I., Azhmyakov, Advances in optimal control of differential systems with state suprema (2017) Proceedings of the 56th IEEE Conference on Decision and Control, Melbourne, Australia, pp. 739-744
dc.relation.referencesWalther, H.O., Linearized stability for semiflows generated by a class of neutral equations, with applications to state-dependent delays (2010) Journal of Dynamics and Differential Equations, 22, pp. 439-462
dc.relation.referencesWardi, Y., Optimal control of switched-mode dynamical systems (2012) Proceedings of the 11th International Workshop on Discrete Event Systems, Guadalajara, Mexico, pp. 4-8
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/other


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem