Mostrar el registro sencillo del ítem

dc.creatorRamirez A.
dc.creatorGiraldo S.
dc.creatorGarcía-Nunez J.
dc.creatorFlórez E.
dc.creatorAcelas N.
dc.date2018
dc.date.accessioned2021-02-05T15:00:12Z
dc.date.available2021-02-05T15:00:12Z
dc.identifier.issn22147144
dc.identifier.urihttp://hdl.handle.net/11407/6156
dc.descriptionIn this study, the removal and recovery of phosphorus (P) were evaluated on fixed-bed column systems using a hybrid adsorbent, i.e. HFeO. The effect of flow rates (1.0–2.5 mL/min) and bed heights (2–6 cm) was examined, and the experimental data were adjusted to the Thomas, Adams–Bohart and Yoon–Nelson models. The results indicate that for the flow rate of 1.0 mL/min and bed height of 2 cm, a maximum adsorption capacity of P (qTh) of 53.57 mg/g is obtained. 6% NaCl acts as the best eluting agent with a 97% efficiency of P desorption. Finally, it was found that HFeO is able to support up to three cycles of adsorption–desorption, decreasing its capacity of P adsorption by 26% with respect to the initial capacity. © 2018 Elsevier Ltd
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85055104690&doi=10.1016%2fj.jwpe.2018.10.008&partnerID=40&md5=cbd301fe71cfc91aaf29abe7be36abc3
dc.sourceJournal of Water Process Engineering
dc.titlePhosphate removal from water using a hybrid material in a fixed-bed column
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.identifier.doi10.1016/j.jwpe.2018.10.008
dc.relation.citationvolume26
dc.relation.citationstartpage131
dc.relation.citationendpage137
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationRamirez, A., Grupo de Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, Colombia
dc.affiliationGiraldo, S., Grupo de Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, Colombia
dc.affiliationGarcía-Nunez, J., Colombian Oil Palm Research Centre, Cenipalma, Bogotá, Colombia
dc.affiliationFlórez, E., Grupo de Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, Colombia
dc.affiliationAcelas, N., Grupo de Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, Colombia
dc.relation.referencesZhang, B., Chen, N., Feng, C., Zhang, Z., Adsorption for phosphate by crosslinked / non-crosslinked-chitosan-Fe (III) complex sorbents: characteristic and mechanism (2018) Chem. Eng. J., 353, pp. 361-372
dc.relation.referencesTran, N., Drogui, P., Blais, J.F., Mercier, G., Phosphorus removal from spiked municipal wastewater using either electrochemical coagulation or chemical coagulation as tertiary treatment (2012) Sep. Purif. Technol., 95, pp. 16-25
dc.relation.referencesRodriguez-Garcia, G., Molinos-Senante, M., Hospido, A., Hernández-Sancho, F., Moreira, M.T., Feijoo, G., Environmental and economic profile of six typologies of wastewater treatment plants (2011) Water Res., 45, pp. 5997-6010
dc.relation.referencesPorrello, S., Lenzi, M., Persia, E., Tomassetti, P., Finoia, M.G., Reduction of aquaculture wastewater eutrophication by phytotreatment ponds system I. Dissolved and particulate nitrogen and phosphorus (2003) Aquaculture, 219, pp. 515-529
dc.relation.referencesMorse, G.K., Brett, S.W., Guy, J.A., Lester, J.N., Review: phosphorus removal and recovery technologies (1998) Sci. Total Environ., 212, pp. 69-81
dc.relation.referencesYang, Q., Wang, X., Luo, W., Sun, J., Xu, Q., Chen, F., Zhao, J., Effectiveness and mechanisms of phosphate adsorption on iron-modi fi ed biochars derived from waste activated sludge (2018) Bioresour. Technol., 247, pp. 537-544
dc.relation.referencesZhu, Z., Huang, C.P., Zhu, Y., Wei, W., Qin, H., A hierarchical porous adsorbent of nano- α -Fe 2 O 3 / Fe 3 O 4 on bamboo biochar (HPA-Fe / C-B) for the removal of phosphate from water (2018) J. Water Process Eng., 25, pp. 96-104
dc.relation.referencesLoganathan, P., Vigneswaran, S., Kandasamy, J., Bolan, N.S., Removal and recovery of phosphate from water using sorption (2014) Crit. Rev. Environ. Sci. Technol., 44, pp. 847-907
dc.relation.referencesEgemose, S., Sønderup, M.J., Beinthin, M.V., Reitzel, K., Hoffmann, C.C., Flindt, M.R., Crushed concrete as a phosphate binding material: a potential new management tool (2012) J. Environ. Qual., 41, pp. 647-653
dc.relation.referencesLiu, X., Zhang, L., Removal of phosphate anions using the modified chitosan beads: adsorption kinetic, isotherm and mechanism studies (2015) Powder Technol., 277, pp. 112-119
dc.relation.referencesVidal, B., Hedström, A., Herrmann, I., Phosphorus reduction in fi lters for on-site wastewater treatment (2018) J. Water Process Eng., 22, pp. 210-217
dc.relation.referencesTofik, A.S., Taddesse, A.M., Tesfahun, K.T., Girma, G.G., Fe-Al binary oxide nanosorbent: synthesis, characterization and phosphate sorption property (2016) J. Environ. Chem. Eng., 4, pp. 2458-2468
dc.relation.referencesGypser, S., Hirsch, F., Schleicher, A.M., Freese, D., Impact of crystalline and amorphous iron- and aluminum hydroxides on mechanisms of phosphate adsorption and desorption (2017) J. Environ. Sci., 70, pp. 175-189
dc.relation.referencesPepper, R.A., Couperthwaite, S.J., Millar, G.J., Re-use of waste red mud: production of a functional iron oxide adsorbent for removal of phosphorous (2018) J. Water Process Eng., 25, pp. 138-148
dc.relation.referencesMezenner, N.Y., Bensmaili, A., Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste (2009) Chem. Eng. J., 147, pp. 87-96
dc.relation.referencesSuresh Kumar, P., Prot, T., Korving, L., Keesman, K.J., Dugulan, I., van Loosdrecht, M.C.M., Witkamp, G.J., Effect of pore size distribution on iron oxide coated granular activated carbons for phosphate adsorption – importance of mesopores (2017) Chem. Eng. J., 326, pp. 231-239
dc.relation.referencesLalley, J., Han, C., Li, X., Dionysiou, D.D., Nadagouda, M.N., Phosphate adsorption using modified iron oxide-based sorbents in lake water: kinetics, equilibrium, and column tests (2016) Chem. Eng. J., 284, pp. 1386-1396
dc.relation.referencesJiang, D., Amano, Y., Machida, M., Removal and recovery of phosphate from water by a magnetic Fe3O4@ASC adsorbent (2017) J. Environ. Chem. Eng., 5, pp. 4229-4238
dc.relation.referencesKang, K., Lee, C.G., Choi, J.W., Hong, S.G., Park, S.J., Application of thermally treated crushed concrete granules for the removal of phosphate: a cheap adsorbent with high adsorption capacity (2017) Water Air Soil Pollut., 228
dc.relation.referencesNur, T., Johir, M.A.H., Loganathan, P., Nguyen, T., Vigneswaran, S., Kandasamy, J., Phosphate removal from water using an iron oxide impregnated strong base anion exchange resin (2014) J. Ind. Eng. Chem., 20, pp. 1301-1307
dc.relation.referencesKumar, I.A., Viswanathan, N., Development of multivalent metal ions imprinted chitosan biocomposites for phosphate sorption (2017) Int. J. Biol. Macromol., 104, pp. 1539-1547
dc.relation.referencesFu, H., Yang, Y., Zhu, R., Liu, J., Usman, M., Chen, Q., He, H., Superior adsorption of phosphate by ferrihydrite-coated and lanthanum- decorated magnetite (2018) J. Colloid Interface Sci. Super., 530, pp. 704-713
dc.relation.referencesLü, C., Environmental geochemistry signi fi cance of organic phosphorus: an insight from its adsorption on iron oxides (2017) Appl. Geochem., 84, pp. 52-60
dc.relation.referencesLuengo, C., Brigante, M., Avena, M., Adsorption kinetics of phosphate and arsenate on goethite. A comparative study (2007) J. Colloid Interface Sci., 311, pp. 354-360
dc.relation.referencesBlaney, L.M., Cinar, S., SenGupta, A.K., Hybrid anion exchanger for trace phosphate removal from water and wastewater (2007) Water Res., 41, pp. 1603-1613
dc.relation.referencesMahardika, D., Park, H., Choo, K., Ferrihydrite-impregnated granular activated carbon (FH @ GAC) for ef fi cient phosphorus removal from wastewater secondary ef fl uent (2018) Chemosphere., 207, pp. 527-533
dc.relation.referencesAcelas, N.Y., Martin, B.D., López, D., Jefferson, B., Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media (2015) Chemosphere., 119, pp. 1353-1360
dc.relation.referencesLi, R., Wang, J.J., Zhou, B., Zhang, Z., Liu, S., Lei, S., Xiao, R., Simultaneous capture removal of phosphate, ammonium and organic substances by MgO impregnated biochar and its potential use in swine wastewater treatment (2017) J. Clean. Prod., 147, pp. 96-107
dc.relation.referencesZhou, Q., Wang, X., Liu, J., Zhang, L., Phosphorus removal from wastewater using nano-particulates of hydrated ferric oxide doped activated carbon fiber prepared by Sol-Gel method (2012) Chem. Eng. J., 200-202, pp. 619-626
dc.relation.referencesNguyen, T.A.H., Ngo, H.H., Guo, W.S., Pham, T.Q., Li, F.M., Nguyen, T.V., Bui, X.T., Adsorption of phosphate from aqueous solutions and sewage using zirconium loaded okara (ZLO): fixed-bed column study (2015) Sci. Total Environ., 523, pp. 40-49
dc.relation.referencesPaudyal, H., Pangeni, B., Inoue, K., Kawakita, H., Ohto, K., Alam, S., Adsorptive removal of fluoride from aqueous medium using a fixed bed column packed with Zr(IV) loaded dried orange juice residue (2013) Bioresour. Technol., 146, pp. 713-720
dc.relation.referencesBulgariu, D., Bulgariu, L., Sorption of Pb(II) onto a mixture of algae waste biomass and anion exchanger resin in a packed-bed column (2013) Bioresour. Technol., 129, pp. 374-380
dc.relation.referencesSun, X.F., Imai, T., Sekine, M., Higuchi, T., Yamamoto, K., Kanno, A., Nakazono, S., Adsorption of phosphate using calcined Mg3-Fe layered double hydroxides in a fixed-bed column study (2014) J. Ind. Eng. Chem., 20, pp. 3623-3630
dc.relation.referencesThomas, H.C., Chromatography: a problem in kinetics (1948) Ann. N. Y. Acad. Sci., 49, pp. 161-182
dc.relation.referencesHusein, D.Z., Al-Radadi, T., Danish, E.Y., Adsorption of phosphate using alginate-/zirconium-grafted newspaper pellets: fixed-bed column study and application, arab (2017) J. Sci. Eng., 42, pp. 1399-1412
dc.relation.referencesBohart, G.S., Adams, E.Q., Some aspects of the behavior of charcoal with respect to chlorine (1920) J. Am. Chem. Soc., 42, pp. 523-544
dc.relation.referencesLong, Y., Lei, D., Ni, J., Ren, Z., Chen, C., Xu, H., Packed bed column studies on lead(II) removal from industrial wastewater by modified Agaricus bisporus (2014) Bioresour. Technol., 152, pp. 457-463
dc.relation.referencesYoon, Y.H., Nelson, J.H., Application of gas adsorption kinetics I. A theoretical model for respirator cartridge service life (1984) Am. Ind. Hyg. Assoc. J., 45, pp. 509-516
dc.relation.referencesCalero, M., Hernáinz, F., Blázquez, G., Tenorio, G., Martín-Lara, M.A., Study of Cr (III) biosorption in a fixed-bed column (2009) J. Hazard. Mater., 171, pp. 886-893
dc.relation.referencesSingh, A., Kumar, D., Gaur, J.P., Continuous metal removal from solution and industrial effluents using Spirogyra biomass-packed column reactor (2012) Water Res., 46, pp. 779-788
dc.relation.referencesJung, K.W., Jeong, T.U., Choi, J.W., Ahn, K.H., Lee, S.H., Adsorption of phosphate from aqueous solution using electrochemically modified biochar calcium-alginate beads: batch and fixed-bed column performance (2017) Bioresour. Technol., 244, pp. 23-32
dc.relation.referencesJung, K.-W., Jeong, T.-U., Choi, B.H., Kang, H.-J., Ahn, K.-H., Phosphate adsorption from aqueous solution by Laminaria japonica -derived biochar-calcium alginate beads in a fixed-bed column: experiments and prediction of breakthrough curves (2017) Environ. Prog. Sustain. Energy, 36, pp. 1365-1373
dc.relation.referencesHekmatzadeh, A.A., Karimi-Jashani, A., Talebbeydokhti, N., Kløve, B., Modeling of nitrate removal for ion exchange resin in batch and fixed bed experiments (2012) Desalination, 284, pp. 22-31
dc.relation.referencesSoto, M.L., Moure, A., Domínguez, H., Parajó, J.C., Batch and fixed bed column studies on phenolic adsorption from wine vinasses by polymeric resins (2017) J. Food Eng., 209, pp. 52-60
dc.relation.referencesZhao, D., Sengupta, A.K., Ultimate removal of phosphate from wastewater using a new class of polymeric ion exchangers (1998) Water Res., 32, pp. 1613-1625
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem