Mostrar el registro sencillo del ítem
Phosphate removal from water using a hybrid material in a fixed-bed column
dc.creator | Ramirez A. | |
dc.creator | Giraldo S. | |
dc.creator | García-Nunez J. | |
dc.creator | Flórez E. | |
dc.creator | Acelas N. | |
dc.date | 2018 | |
dc.date.accessioned | 2021-02-05T15:00:12Z | |
dc.date.available | 2021-02-05T15:00:12Z | |
dc.identifier.issn | 22147144 | |
dc.identifier.uri | http://hdl.handle.net/11407/6156 | |
dc.description | In this study, the removal and recovery of phosphorus (P) were evaluated on fixed-bed column systems using a hybrid adsorbent, i.e. HFeO. The effect of flow rates (1.0–2.5 mL/min) and bed heights (2–6 cm) was examined, and the experimental data were adjusted to the Thomas, Adams–Bohart and Yoon–Nelson models. The results indicate that for the flow rate of 1.0 mL/min and bed height of 2 cm, a maximum adsorption capacity of P (qTh) of 53.57 mg/g is obtained. 6% NaCl acts as the best eluting agent with a 97% efficiency of P desorption. Finally, it was found that HFeO is able to support up to three cycles of adsorption–desorption, decreasing its capacity of P adsorption by 26% with respect to the initial capacity. © 2018 Elsevier Ltd | |
dc.language.iso | eng | |
dc.publisher | Elsevier Ltd | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055104690&doi=10.1016%2fj.jwpe.2018.10.008&partnerID=40&md5=cbd301fe71cfc91aaf29abe7be36abc3 | |
dc.source | Journal of Water Process Engineering | |
dc.title | Phosphate removal from water using a hybrid material in a fixed-bed column | |
dc.type | Article | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.identifier.doi | 10.1016/j.jwpe.2018.10.008 | |
dc.relation.citationvolume | 26 | |
dc.relation.citationstartpage | 131 | |
dc.relation.citationendpage | 137 | |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.affiliation | Ramirez, A., Grupo de Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, Colombia | |
dc.affiliation | Giraldo, S., Grupo de Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, Colombia | |
dc.affiliation | García-Nunez, J., Colombian Oil Palm Research Centre, Cenipalma, Bogotá, Colombia | |
dc.affiliation | Flórez, E., Grupo de Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, Colombia | |
dc.affiliation | Acelas, N., Grupo de Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, Colombia | |
dc.relation.references | Zhang, B., Chen, N., Feng, C., Zhang, Z., Adsorption for phosphate by crosslinked / non-crosslinked-chitosan-Fe (III) complex sorbents: characteristic and mechanism (2018) Chem. Eng. J., 353, pp. 361-372 | |
dc.relation.references | Tran, N., Drogui, P., Blais, J.F., Mercier, G., Phosphorus removal from spiked municipal wastewater using either electrochemical coagulation or chemical coagulation as tertiary treatment (2012) Sep. Purif. Technol., 95, pp. 16-25 | |
dc.relation.references | Rodriguez-Garcia, G., Molinos-Senante, M., Hospido, A., Hernández-Sancho, F., Moreira, M.T., Feijoo, G., Environmental and economic profile of six typologies of wastewater treatment plants (2011) Water Res., 45, pp. 5997-6010 | |
dc.relation.references | Porrello, S., Lenzi, M., Persia, E., Tomassetti, P., Finoia, M.G., Reduction of aquaculture wastewater eutrophication by phytotreatment ponds system I. Dissolved and particulate nitrogen and phosphorus (2003) Aquaculture, 219, pp. 515-529 | |
dc.relation.references | Morse, G.K., Brett, S.W., Guy, J.A., Lester, J.N., Review: phosphorus removal and recovery technologies (1998) Sci. Total Environ., 212, pp. 69-81 | |
dc.relation.references | Yang, Q., Wang, X., Luo, W., Sun, J., Xu, Q., Chen, F., Zhao, J., Effectiveness and mechanisms of phosphate adsorption on iron-modi fi ed biochars derived from waste activated sludge (2018) Bioresour. Technol., 247, pp. 537-544 | |
dc.relation.references | Zhu, Z., Huang, C.P., Zhu, Y., Wei, W., Qin, H., A hierarchical porous adsorbent of nano- α -Fe 2 O 3 / Fe 3 O 4 on bamboo biochar (HPA-Fe / C-B) for the removal of phosphate from water (2018) J. Water Process Eng., 25, pp. 96-104 | |
dc.relation.references | Loganathan, P., Vigneswaran, S., Kandasamy, J., Bolan, N.S., Removal and recovery of phosphate from water using sorption (2014) Crit. Rev. Environ. Sci. Technol., 44, pp. 847-907 | |
dc.relation.references | Egemose, S., Sønderup, M.J., Beinthin, M.V., Reitzel, K., Hoffmann, C.C., Flindt, M.R., Crushed concrete as a phosphate binding material: a potential new management tool (2012) J. Environ. Qual., 41, pp. 647-653 | |
dc.relation.references | Liu, X., Zhang, L., Removal of phosphate anions using the modified chitosan beads: adsorption kinetic, isotherm and mechanism studies (2015) Powder Technol., 277, pp. 112-119 | |
dc.relation.references | Vidal, B., Hedström, A., Herrmann, I., Phosphorus reduction in fi lters for on-site wastewater treatment (2018) J. Water Process Eng., 22, pp. 210-217 | |
dc.relation.references | Tofik, A.S., Taddesse, A.M., Tesfahun, K.T., Girma, G.G., Fe-Al binary oxide nanosorbent: synthesis, characterization and phosphate sorption property (2016) J. Environ. Chem. Eng., 4, pp. 2458-2468 | |
dc.relation.references | Gypser, S., Hirsch, F., Schleicher, A.M., Freese, D., Impact of crystalline and amorphous iron- and aluminum hydroxides on mechanisms of phosphate adsorption and desorption (2017) J. Environ. Sci., 70, pp. 175-189 | |
dc.relation.references | Pepper, R.A., Couperthwaite, S.J., Millar, G.J., Re-use of waste red mud: production of a functional iron oxide adsorbent for removal of phosphorous (2018) J. Water Process Eng., 25, pp. 138-148 | |
dc.relation.references | Mezenner, N.Y., Bensmaili, A., Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste (2009) Chem. Eng. J., 147, pp. 87-96 | |
dc.relation.references | Suresh Kumar, P., Prot, T., Korving, L., Keesman, K.J., Dugulan, I., van Loosdrecht, M.C.M., Witkamp, G.J., Effect of pore size distribution on iron oxide coated granular activated carbons for phosphate adsorption – importance of mesopores (2017) Chem. Eng. J., 326, pp. 231-239 | |
dc.relation.references | Lalley, J., Han, C., Li, X., Dionysiou, D.D., Nadagouda, M.N., Phosphate adsorption using modified iron oxide-based sorbents in lake water: kinetics, equilibrium, and column tests (2016) Chem. Eng. J., 284, pp. 1386-1396 | |
dc.relation.references | Jiang, D., Amano, Y., Machida, M., Removal and recovery of phosphate from water by a magnetic Fe3O4@ASC adsorbent (2017) J. Environ. Chem. Eng., 5, pp. 4229-4238 | |
dc.relation.references | Kang, K., Lee, C.G., Choi, J.W., Hong, S.G., Park, S.J., Application of thermally treated crushed concrete granules for the removal of phosphate: a cheap adsorbent with high adsorption capacity (2017) Water Air Soil Pollut., 228 | |
dc.relation.references | Nur, T., Johir, M.A.H., Loganathan, P., Nguyen, T., Vigneswaran, S., Kandasamy, J., Phosphate removal from water using an iron oxide impregnated strong base anion exchange resin (2014) J. Ind. Eng. Chem., 20, pp. 1301-1307 | |
dc.relation.references | Kumar, I.A., Viswanathan, N., Development of multivalent metal ions imprinted chitosan biocomposites for phosphate sorption (2017) Int. J. Biol. Macromol., 104, pp. 1539-1547 | |
dc.relation.references | Fu, H., Yang, Y., Zhu, R., Liu, J., Usman, M., Chen, Q., He, H., Superior adsorption of phosphate by ferrihydrite-coated and lanthanum- decorated magnetite (2018) J. Colloid Interface Sci. Super., 530, pp. 704-713 | |
dc.relation.references | Lü, C., Environmental geochemistry signi fi cance of organic phosphorus: an insight from its adsorption on iron oxides (2017) Appl. Geochem., 84, pp. 52-60 | |
dc.relation.references | Luengo, C., Brigante, M., Avena, M., Adsorption kinetics of phosphate and arsenate on goethite. A comparative study (2007) J. Colloid Interface Sci., 311, pp. 354-360 | |
dc.relation.references | Blaney, L.M., Cinar, S., SenGupta, A.K., Hybrid anion exchanger for trace phosphate removal from water and wastewater (2007) Water Res., 41, pp. 1603-1613 | |
dc.relation.references | Mahardika, D., Park, H., Choo, K., Ferrihydrite-impregnated granular activated carbon (FH @ GAC) for ef fi cient phosphorus removal from wastewater secondary ef fl uent (2018) Chemosphere., 207, pp. 527-533 | |
dc.relation.references | Acelas, N.Y., Martin, B.D., López, D., Jefferson, B., Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media (2015) Chemosphere., 119, pp. 1353-1360 | |
dc.relation.references | Li, R., Wang, J.J., Zhou, B., Zhang, Z., Liu, S., Lei, S., Xiao, R., Simultaneous capture removal of phosphate, ammonium and organic substances by MgO impregnated biochar and its potential use in swine wastewater treatment (2017) J. Clean. Prod., 147, pp. 96-107 | |
dc.relation.references | Zhou, Q., Wang, X., Liu, J., Zhang, L., Phosphorus removal from wastewater using nano-particulates of hydrated ferric oxide doped activated carbon fiber prepared by Sol-Gel method (2012) Chem. Eng. J., 200-202, pp. 619-626 | |
dc.relation.references | Nguyen, T.A.H., Ngo, H.H., Guo, W.S., Pham, T.Q., Li, F.M., Nguyen, T.V., Bui, X.T., Adsorption of phosphate from aqueous solutions and sewage using zirconium loaded okara (ZLO): fixed-bed column study (2015) Sci. Total Environ., 523, pp. 40-49 | |
dc.relation.references | Paudyal, H., Pangeni, B., Inoue, K., Kawakita, H., Ohto, K., Alam, S., Adsorptive removal of fluoride from aqueous medium using a fixed bed column packed with Zr(IV) loaded dried orange juice residue (2013) Bioresour. Technol., 146, pp. 713-720 | |
dc.relation.references | Bulgariu, D., Bulgariu, L., Sorption of Pb(II) onto a mixture of algae waste biomass and anion exchanger resin in a packed-bed column (2013) Bioresour. Technol., 129, pp. 374-380 | |
dc.relation.references | Sun, X.F., Imai, T., Sekine, M., Higuchi, T., Yamamoto, K., Kanno, A., Nakazono, S., Adsorption of phosphate using calcined Mg3-Fe layered double hydroxides in a fixed-bed column study (2014) J. Ind. Eng. Chem., 20, pp. 3623-3630 | |
dc.relation.references | Thomas, H.C., Chromatography: a problem in kinetics (1948) Ann. N. Y. Acad. Sci., 49, pp. 161-182 | |
dc.relation.references | Husein, D.Z., Al-Radadi, T., Danish, E.Y., Adsorption of phosphate using alginate-/zirconium-grafted newspaper pellets: fixed-bed column study and application, arab (2017) J. Sci. Eng., 42, pp. 1399-1412 | |
dc.relation.references | Bohart, G.S., Adams, E.Q., Some aspects of the behavior of charcoal with respect to chlorine (1920) J. Am. Chem. Soc., 42, pp. 523-544 | |
dc.relation.references | Long, Y., Lei, D., Ni, J., Ren, Z., Chen, C., Xu, H., Packed bed column studies on lead(II) removal from industrial wastewater by modified Agaricus bisporus (2014) Bioresour. Technol., 152, pp. 457-463 | |
dc.relation.references | Yoon, Y.H., Nelson, J.H., Application of gas adsorption kinetics I. A theoretical model for respirator cartridge service life (1984) Am. Ind. Hyg. Assoc. J., 45, pp. 509-516 | |
dc.relation.references | Calero, M., Hernáinz, F., Blázquez, G., Tenorio, G., Martín-Lara, M.A., Study of Cr (III) biosorption in a fixed-bed column (2009) J. Hazard. Mater., 171, pp. 886-893 | |
dc.relation.references | Singh, A., Kumar, D., Gaur, J.P., Continuous metal removal from solution and industrial effluents using Spirogyra biomass-packed column reactor (2012) Water Res., 46, pp. 779-788 | |
dc.relation.references | Jung, K.W., Jeong, T.U., Choi, J.W., Ahn, K.H., Lee, S.H., Adsorption of phosphate from aqueous solution using electrochemically modified biochar calcium-alginate beads: batch and fixed-bed column performance (2017) Bioresour. Technol., 244, pp. 23-32 | |
dc.relation.references | Jung, K.-W., Jeong, T.-U., Choi, B.H., Kang, H.-J., Ahn, K.-H., Phosphate adsorption from aqueous solution by Laminaria japonica -derived biochar-calcium alginate beads in a fixed-bed column: experiments and prediction of breakthrough curves (2017) Environ. Prog. Sustain. Energy, 36, pp. 1365-1373 | |
dc.relation.references | Hekmatzadeh, A.A., Karimi-Jashani, A., Talebbeydokhti, N., Kløve, B., Modeling of nitrate removal for ion exchange resin in batch and fixed bed experiments (2012) Desalination, 284, pp. 22-31 | |
dc.relation.references | Soto, M.L., Moure, A., Domínguez, H., Parajó, J.C., Batch and fixed bed column studies on phenolic adsorption from wine vinasses by polymeric resins (2017) J. Food Eng., 209, pp. 52-60 | |
dc.relation.references | Zhao, D., Sengupta, A.K., Ultimate removal of phosphate from wastewater using a new class of polymeric ion exchangers (1998) Water Res., 32, pp. 1613-1625 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/article |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Indexados Scopus [1893]