Show simple item record

dc.contributor.authorde Salas P.F
dc.contributor.authorForero D.V
dc.contributor.authorGariazzo S
dc.contributor.authorMartínez-Miravé P
dc.contributor.authorMena O
dc.contributor.authorTernes C.A
dc.contributor.authorTórtola M
dc.contributor.authorValle J.W.F.
dc.date.accessioned2022-09-14T14:33:25Z
dc.date.available2022-09-14T14:33:25Z
dc.date.created2021
dc.identifier.issn10298479
dc.identifier.urihttp://hdl.handle.net/11407/7359
dc.descriptionWe present an updated global fit of neutrino oscillation data in the simplest three-neutrino framework. In the present study we include up-to-date analyses from a number of experiments. Concerning the atmospheric and solar sectors, besides the data considered previously, we give updated analyses of IceCube DeepCore and Sudbury Neutrino Observatory data, respectively. We have also included the latest electron antineutrino data collected by the Daya Bay and RENO reactor experiments, and the long-baseline T2K and NOνA measurements, as reported in the Neutrino 2020 conference. All in all, these new analyses result in more accurate measurements of θ13, θ12, Δm212 and |Δm312|. The best fit value for the atmospheric angle θ23 lies in the second octant, but first octant solutions remain allowed at ∼ 2.4σ. Regarding CP violation measurements, the preferred value of δ we obtain is 1.08π (1.58π) for normal (inverted) neutrino mass ordering. The global analysis still prefers normal neutrino mass ordering with 2.5σ statistical significance. This preference is milder than the one found in previous global analyses. These new results should be regarded as robust due to the agreement found between our Bayesian and frequentist approaches. Taking into account only oscillation data, there is a weak/moderate preference for the normal neutrino mass ordering of 2.00σ. While adding neutrinoless double beta decay from the latest Gerda, CUORE and KamLAND-Zen results barely modifies this picture, cosmological measurements raise the preference to 2.68σ within a conservative approach. A more aggressive data set combination of cosmological observations leads to a similar preference for normal with respect to inverted mass ordering, namely 2.70σ. This very same cosmological data set provides 2σ upper limits on the total neutrino mass corresponding to Σmν< 0.12 (0.15) eV in the normal (inverted) neutrino mass ordering scenario. The bounds on the neutrino mixing parameters and masses presented in this up-to-date global fit analysis include all currently available neutrino physics inputs. © 2021, The Author(s).eng
dc.language.isoeng
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85107338184&doi=10.1007%2fJHEP02%282021%29071&partnerID=40&md5=bf4fb8d26f5ecc39bb07cfee41a12aa7
dc.sourceJournal of High Energy Physics
dc.title2020 global reassessment of the neutrino oscillation picture
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicas
dc.type.spaArtículo
dc.identifier.doi10.1007/JHEP02(2021)071
dc.subject.keywordBeyond Standard Modeleng
dc.subject.keywordNeutrino Physicseng
dc.relation.citationvolume2021
dc.relation.citationissue2
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationde Salas, P.F., The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, AlbaNova, Stockholm, 10691, Sweden
dc.affiliationForero, D.V., Universidad de Medellín, Carrera 87 No, Medellín, 30-65, Colombia
dc.affiliationGariazzo, S., Instituto de Física Corpuscular, CSIC-Universitat de València, Paterna, 46980, Spain, INFN, Sezione di Torino, Via P. Giuria 1, Torino, I-10125, Italy
dc.affiliationMartínez-Miravé, P., Instituto de Física Corpuscular, CSIC-Universitat de València, Paterna, 46980, Spain, Departament de Física Teòrica, Universitat de València, Burjassot, 46100, Spain
dc.affiliationMena, O., Instituto de Física Corpuscular, CSIC-Universitat de València, Paterna, 46980, Spain
dc.affiliationTernes, C.A., Instituto de Física Corpuscular, CSIC-Universitat de València, Paterna, 46980, Spain, INFN, Sezione di Torino, Via P. Giuria 1, Torino, I-10125, Italy
dc.affiliationTórtola, M., Instituto de Física Corpuscular, CSIC-Universitat de València, Paterna, 46980, Spain, Departament de Física Teòrica, Universitat de València, Burjassot, 46100, Spain
dc.affiliationValle, J.W.F., Instituto de Física Corpuscular, CSIC-Universitat de València, Paterna, 46980, Spain
dc.relation.referencesde Salas, P.F., Forero, D.V., Ternes, C.A., Tortola, M., Valle, J.W.F., Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity (2018) Phys. Lett. B, 782, p. 633. , (,), [arXiv:, 1708.01186,] [, INSPIRE,]
dc.relation.referencesForero, D.V., Tortola, M., Valle, J.W.F., Neutrino oscillations refitted (2014) Phys. Rev. D, 90. , [] [INSPIRE]
dc.relation.referencesForero, D.V., Tortola, M., Valle, J.W.F., Global status of neutrino oscillation parameters after Neutrino-2012 (2012) Phys. Rev. D, 86. , [] [INSPIRE]
dc.relation.referencesSchwetz, T., Tortola, M., Valle, J.W.F., Where we are on θ 13: addendum to ‘Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters’ (2011) New J. Phys., 13, p. 109401. , [] [INSPIRE]
dc.relation.referencesSchwetz, T., Tortola, M., Valle, J.W.F., Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters (2011) New J. Phys., 13. , [] [INSPIRE]
dc.relation.referencesSchwetz, T., Tortola, M.A., Valle, J.W.F., Three-flavour neutrino oscillation update (2008) New J. Phys., 10, p. 113011. , [] [INSPIRE]
dc.relation.referencesMaltoni, M., Schwetz, T., Tortola, M.A., Valle, J.W.F., Status of global fits to neutrino oscillations (2004) New J. Phys., 6, p. 122. , [hep-ph/0405172] [INSPIRE]
dc.relation.referencesMaltoni, M., Schwetz, T., Tortola, M.A., Valle, J.W.F., Status of three neutrino oscillations after the SNO salt data (2003) Phys. Rev. D, 68. , [hep-ph/0309130] [INSPIRE]
dc.relation.referencesEsteban, I., Gonzalez-Garcia, M.C., Maltoni, M., Schwetz, T., Zhou, A., The fate of hints: updated global analysis of three-flavor neutrino oscillations (2020) JHEP, 9, p. 178. , [] [INSPIRE]
dc.relation.referencesCapozzi, F., Di Valentino, E., Lisi, E., Marrone, A., Melchiorri, A., Palazzo, A., Global constraints on absolute neutrino masses and their ordering (2017) Phys. Rev. D, 95. , Addendum ibid. 101 (2020) 116013] [arXiv:,] [INSPIRE
dc.relation.referencesDirect evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory (2002) Phys. Rev. Lett, 89
dc.relation.referencesEvidence for oscillation of atmospheric neutrinos (1998) Phys. Rev. Lett, 81, p. 1562
dc.relation.referencesMcDonald, A.B., Nobel Lecture: The Sudbury Neutrino Observatory: Observation of flavor change for solar neutrinos (2016) Rev. Mod. Phys., 88
dc.relation.referencesKajita, T., Nobel Lecture: Discovery of atmospheric neutrino oscillations (2016) Rev. Mod. Phys., 88
dc.relation.referencesFirst results from KamLAND: Evidence for reactor anti-neutrino disappearance (2003) Phys. Rev. Lett., 90
dc.relation.referencesMiranda, O.G., Pena-Garay, C., Rashba, T.I., Semikoz, V.B., Valle, J.W.F., The Simplest resonant spin flavor solution to the solar neutrino problem (2001) Nucl. Phys. B, 595, p. 360. , [hep-ph/0005259] [INSPIRE]
dc.relation.referencesMiranda, O.G., Pena-Garay, C., Rashba, T.I., Semikoz, V.B., Valle, J.W.F., A Nonresonant dark side solution to the solar neutrino problem (2001) Phys. Lett. B, 521, p. 299. , [hep-ph/0108145] [INSPIRE]
dc.relation.referencesBarranco, J., Miranda, O.G., Rashba, T.I., Semikoz, V.B., Valle, J.W.F., Confronting spin flavor solutions of the solar neutrino problem with current and future solar neutrino data (2002) Phys. Rev. D, 66. , [hep-ph/0207326] [INSPIRE]
dc.relation.referencesGonzalez-Garcia, M.C., Atmospheric neutrino observations and flavor changing interactions (1999) Phys. Rev. Lett., 82, p. 3202. , [hep-ph/9809531] [INSPIRE]
dc.relation.referencesGuzzo, M., de Holanda, P.C., Maltoni, M., Nunokawa, H., Tortola, M.A., Valle, J.W.F., Status of a hybrid three neutrino interpretation of neutrino data (2002) Nucl. Phys. B, 629, p. 479. , [hep-ph/0112310] [INSPIRE]
dc.relation.referencesMiranda, O.G., Tortola, M.A., Valle, J.W.F., Are solar neutrino oscillations robust? (2006) JHEP, 10, p. 008. , [hep-ph/0406280] [INSPIRE]
dc.relation.referencesEsteban, I., Gonzalez-Garcia, M.C., Maltoni, M., Martinez-Soler, I., Salvado, J., Updated constraints on non-standard interactions from global analysis of oscillation data (2018) JHEP, (8), p. 180. , Addendum ibid. 12 (2020) 152] [arXiv:,] [INSPIRE
dc.relation.referencesA Status Report (2019) Scipost Phys. Proc., 2, p. 001. , INSPIRE
dc.relation.referencesGariazzo, S., Giunti, C., Laveder, M., Li, Y.F., Zavanin, E.M., Light sterile neutrinos (2016) J. Phys. G, 43. , [] [INSPIRE]
dc.relation.referencesGariazzo, S., Giunti, C., Laveder, M., Li, Y.F., Updated Global 3 + 1 Analysis of Short-BaseLine Neutrino Oscillations (2017) JHEP, 6, p. 135. , [] [INSPIRE]
dc.relation.referencesDentler, M., Updated Global Analysis of Neutrino Oscillations in the Presence of eV-Scale Sterile Neutrinos (2018) JHEP, 8, p. 010. , [] [INSPIRE]
dc.relation.referencesDentler, M., Hernández-Cabezudo, A., Kopp, J., Maltoni, M., Schwetz, T., Sterile neutrinos or flux uncertainties? — Status of the reactor anti-neutrino anomaly (2017) JHEP, 11, p. 099. , [] [INSPIRE]
dc.relation.referencesGariazzo, S., Giunti, C., Laveder, M., Li, Y.F., Model-independent v¯ e short-baseline oscillations from reactor spectral ratios (2018) Phys. Lett. B, 782, p. 13. , [] [INSPIRE]
dc.relation.referencesDiaz, A., Argüelles, C.A., Collin, G.H., Conrad, J.M., Shaevitz, M.H., Where Are We With Light Sterile Neutrinos? (2020) Phys. Rept., 884, p. 1. , [] [INSPIRE]
dc.relation.referencesGiunti, C., Lasserre, T., eV-scale Sterile Neutrinos (2019) Ann. Rev. Nucl. Part. Sci., 69, p. 163. , [] [INSPIRE]
dc.relation.referencesBöser, S., Status of Light Sterile Neutrino Searches (2020) Prog. Part. Nucl. Phys., 111. , [] [INSPIRE]
dc.relation.referencesCleveland, B.T., Measurement of the solar electron neutrino flux with the Homestake chlorine detector (1998) Astrophys. J., 496, p. 505. , [INSPIRE]
dc.relation.referencesKaether, F., Hampel, W., Heusser, G., Kiko, J., Kirsten, T., Reanalysis of the GALLEX solar neutrino flux and source experiments (2010) Phys. Lett. B, 685, p. 47. , [] [INSPIRE]
dc.relation.referencesMeasurement of the solar neutrino capture rate with gallium metal. III: Results for the 2002–2007 data-taking period (2009) Phys. Rev. C, 80. , INSPIRE
dc.relation.referencesBellini, G., Precision measurement of the 7Be solar neutrino interaction rate in Borexino (2011) Phys. Rev. Lett., 107. , [] [INSPIRE]
dc.relation.referencesFinal results of Borexino Phase-I on low energy solar neutrino spectroscopy (2014) Phys. Rev. D, 89. , INSPIRE
dc.relation.referencesSolar neutrino measurements in Super-Kamiokande-I (2006) Phys. Rev. D, 73. , INSPIRE
dc.relation.referencesSolar neutrino measurements in Super-Kamiokande-II (2008) Phys. Rev. D, 78. , INSPIRE
dc.relation.referencesSolar neutrino results in Super-Kamiokande-III (2011) Phys. Rev. D, 83. , INSPIRE
dc.relation.referencesNakano, Y., (2016) 8 B Solar Neutrino Spectrum Measurement Using Super-Kamiokande IV, , http://www-sk.icrr.u-tokyo.ac.jp/sk/_pdf/articles/2016/doc_thesis_naknao.pdf, Ph.D. Thesis, University of Tokyo
dc.relation.referencesRanucci, G., (2020) First Detection of Solar Neutrinos from CNO Cycle with Borexino, , https://doi.org/10.5281/zenodo.4134014, June
dc.relation.referencesNakajima, Y., (2020) Recent Results and Future Prospects from Super-Kamiokande, , https://doi.org/10.5281/zenodo.4134680, June
dc.relation.referencesCombined Analysis of all Three Phases of Solar Neutrino Data from the Sudbury Neutrino Observatory (2013) Phys. Rev. C, 88. , INSPIRE
dc.relation.referencesVinyoles, N., A new Generation of Standard Solar Models (2017) Astrophys. J., 835, p. 202. , [] [INSPIRE]
dc.relation.referencesPrecision Measurement of Neutrino Oscillation Parameters with KamLAND (2008) Phys. Rev. Lett., 100. , INSPIRE
dc.relation.referencesConstraints on θ13 from A Three-Flavor Oscillation Analysis of Reactor Antineutrinos at KamLAND (2011) Phys. Rev. D, 83. , INSPIRE
dc.relation.referencesReactor On-Off Antineutrino Measurement with KamLAND (2013) Phys. Rev. D, 88. , INSPIRE
dc.relation.referencesEscrihuela, F.J., Miranda, O.G., Tortola, M.A., Valle, J.W.F., Constraining nonstandard neutrino-quark interactions with solar, reactor and accelerator data (2009) Phys. Rev. D, 80. , INSPIRE
dc.relation.referencesEscrihuela, F.J., Miranda, O.G., Tortola, M.A., Valle, J.W.F., Constraining nonstandard neutrino-quark interactions with solar, reactor and accelerator data (2009) Phys. Rev. D, 80
dc.relation.references_1], P.C., Schwetz, T., Coloma, P., Schwetz, T., Generalized mass ordering degeneracy in neutrino oscillation experiments (2016) Phys. Rev. D, 94. , (,), and, (,), [arXiv:, 1604.05772,] [, INSPIRE,]
dc.relation.referencesColoma, P., Schwetz, T., Coloma, P., Schwetz, T., Generalized mass ordering degeneracy in neutrino oscillation experiments (2017) Phys. Rev. D, 95
dc.relation.referencesGoswami, S., Smirnov, A.Y., Solar neutrinos and 1-3 leptonic mixing (2005) Phys. Rev. D, 72. , [hep-ph/0411359] [INSPIRE]
dc.relation.referencesMeasurement of Reactor Antineutrino Oscillation Amplitude and Frequency at RENO (2018) Phys. Rev. Lett., 121. , INSPIRE
dc.relation.referencesMeasurement of the Electron Antineutrino Oscillation with 1958 Days of Operation at Daya Bay (2018) Phys. Rev. Lett., 121. , INSPIRE
dc.relation.referencesNunokawa, H., Parke, S.J., Zukanovich Funchal, R., Another possible way to determine the neutrino mass hierarchy (2005) Phys. Rev. D, 72. , [hep-ph/0503283] [INSPIRE]
dc.relation.referencesHernandez-Cabezudo, A., Parke, S.J., Seo, S.-H., Constraint on the solar ∆m 2 using 4000 days of short baseline reactor neutrino data (2019) Phys. Rev. D, 100, p. 113008. , [] [INSPIRE]
dc.relation.referencesSpectral Measurement of the Electron Antineutrino Oscillation Amplitude and Frequency using 500 Live Days of RENO Data (2018) Phys. Rev. D, 98. , INSPIRE
dc.relation.referencesYoo, J.R., (2020), https://doi.org/10.5281/zenodo.4123573, June
dc.relation.referencesObservation of Energy and Baseline Dependent Reactor Antineutrino Disappearance in the RENO Experiment (2016) Phys. Rev. Lett., 116. , INSPIRE
dc.relation.referencesImproved Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay (2017) Chin. Phys. C, 41. , INSPIRE
dc.relation.referencesMeasurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment (2017) Phys. Rev. D, 95. , INSPIRE
dc.relation.referencesAtmospheric neutrino oscillation analysis with external constraints in Super-Kamiokande I-IV (2018) Phys. Rev. D, 97. , INSPIRE
dc.relation.referencesMeasurement of Atmospheric Neutrino Oscillations at 6–56 GeV with IceCube DeepCore (2018) Phys. Rev. Lett., 120. , INSPIRE
dc.relation.referencesMeasurement of Atmospheric Tau Neutrino Appearance with IceCube DeepCore (2019) Phys. Rev. D, 99. , INSPIRE
dc.relation.referencesAtmospheric Neutrino Oscillation Analysis with Improved Event Reconstruction in Super-Kamiokande IV (2019) PTEP, 2019. , INSPIRE
dc.relation.referenceshttp://www-sk.icrr.u-tokyo.ac.jp/sk/publications/data/sk.atm.data.release.tar.gz
dc.relation.referencesDetermining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data (2015) Phys. Rev. D, 91. , INSPIRE
dc.relation.references(2019) Three-Year High-Statistics Neutrino Oscillation Samples, , https://icecube.wisc.edu/science/data/highstats_nuosc_3y
dc.relation.referencesHimmel, A., (2020) New Oscillation Results from the Nova Experiment, , https://doi.org/10.5281/zenodo.3959581, July
dc.relation.referencesDunne, P., (2020) Latest Neutrino Oscillation Results from T2K, , https://doi.org/10.5281/zenodo.3959558, July
dc.relation.referencesCombined analysis of ν μ disappearance and ν μ → ν e appearance in MINOS using accelerator and atmospheric neutrinos (2014) Phys. Rev. Lett., 112. , INSPIRE
dc.relation.referencesMeasurement of Neutrino Oscillation by the K 2K Experiment (2006) Phys. Rev. D, 74
dc.relation.referencesSearch for Electron Antineutrino Appearance in a Long-baseline Muon Antineutrino Beam (2020) Phys. Rev. Lett., 124. , INSPIRE
dc.relation.referencesConstraint on the matter-antimatter symmetry-violating phase in neutrino oscillations (2020) Nature, 580, p. 339. , INSPIRE
dc.relation.referencesConstraint on the matter-antimatter symmetry-violating phase in neutrino oscillations (2020) Nature, 583, p. E16
dc.relation.referencesSearch for CP-violation in Neutrino and Antineutrino Oscillations by the T2K Experiment with 2.2 × 1021 Protons on Target (2018) Phys. Rev. Lett., 121. , INSPIRE
dc.relation.referencesNew constraints on oscillation parameters from ν e appearance and ν μ disappearance in the NOvA experiment (2018) Phys. Rev. D, 98. , INSPIRE
dc.relation.referencesFirst Measurement of Neutrino Oscillation Parameters using Neutrinos and Antineutrinos by NOvA (2019) Phys. Rev. Lett., 123. , INSPIRE
dc.relation.referencesHuber, P., Lindner, M., Winter, W., Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator) (2005) Comput. Phys. Commun, 167, p. 195. , INSPIRE
dc.relation.referencesHuber, P., Kopp, J., Lindner, M., Rolinec, M., Winter, W., New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator (2007) Comput. Phys. Commun, 177, p. 432. , INSPIRE
dc.relation.referencesMeasurement of Neutrino and Antineutrino Oscillations Using Beam and Atmospheric Data in MINOS (2013) Phys. Rev. Lett., 110. , INSPIRE
dc.relation.referencesElectron neutrino and antineutrino appearance in the full MINOS data sample (2013) Phys. Rev. Lett., 110. , INSPIRE
dc.relation.referencesEvidence for muon neutrino oscillation in an accelerator-based experiment (2005) Phys. Rev. Lett, 94. , INSPIRE
dc.relation.referencesNeutrino Physics with JUNO (2016) J. Phys. G, 43. , INSPIRE
dc.relation.referencesTórtola, M.A., Barenboim, G., Ternes, C.A., CPT and CP, an entangled couple (2020) JHEP, 7, p. 155. , [] [INSPIRE]
dc.relation.referencesKelly, K.J., Machado, P.A.N., Parke, S.J., Perez-Gonzalez, Y.F., Funchal, R.Z., Neutrino mass ordering in light of recent data (2021) Phys. Rev. D, 103. , [] [INSPIRE]
dc.relation.referencesAudren, B., Lesgourgues, J., Benabed, K., Prunet, S., Conservative Constraints on Early Cosmology: an illustration of the Monte Python cosmological parameter inference code (2013) JCAP, 2, p. 001. , [] [INSPIRE]
dc.relation.referencesBrinckmann, T., Lesgourgues, J., MontePython 3: boosted MCMC sampler and other features (2019) Phys. Dark Univ., 24, p. 100260. , [] [INSPIRE]
dc.relation.referencesHeavens, A., Marginal Likelihoods from Monte Carlo Markov Chains
dc.relation.referencesHandley, W.J., Hobson, M.P., Lasenby, A.N., PolyChord: nested sampling for cosmology (2015) Mon. Not. Roy. Astron. Soc., 450, p. L61. , [] [INSPIRE]
dc.relation.referencesHandley, W.J., Hobson, M.P., Lasenby, A.N., polychord: next-generation nested sampling (2015) Mon. Not. Roy. Astron. Soc., 453, p. 4385. , [] [INSPIRE]
dc.relation.referencesGariazzo, S., Archidiacono, M., de Salas, P.F., Mena, O., Ternes, C.A., Tórtola, M., Neutrino masses and their ordering: Global Data, Priors and Models (2018) JCAP, 3, p. 011. , [] [INSPIRE]
dc.relation.referencesde Salas, P.F., Gariazzo, S., Mena, O., Ternes, C.A., Tórtola, M., Neutrino Mass Ordering from Oscillations and Beyond: 2018 Status and Future Prospects (2018) Front. Astron. Space Sci, 5, p. 36
dc.relation.referencesGiunti, C., Kim, C.W., (2007) Fundamentals of Neutrino Physics and Astrophysics, , Oxford University Press, INSPIRE
dc.relation.referencesImproved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN (2019) Phys. Rev. Lett., 123. , INSPIRE
dc.relation.referencesKraus, C., Final results from phase II of the Mainz neutrino mass search in tritium beta decay (2005) Eur. Phys. J. C, 40, p. 447. , [hep-ex/0412056] [INSPIRE]
dc.relation.referencesAseev, V.N., Measurement of the electron antineutrino mass in tritium beta decay in the Troitsk nu-mass experiment (2012) Phys. Atom. Nucl., 75, p. 464. , [INSPIRE]
dc.relation.referencesHuang, G.-Y., Rodejohann, W., Zhou, S., Effective neutrino masses in KATRIN and future tritium beta-decay experiments (2020) Phys. Rev. D, 101. , [] [INSPIRE]
dc.relation.referencesSchechter, J., Valle, J.W.F., Neutrinoless Double beta Decay in SU(2) × U(1) Theories (1982) Phys. Rev. D, 25, p. 2951. , [INSPIRE]
dc.relation.referencesSchechter, J., Valle, J.W.F., Neutrino Masses in SU(2) × U(1) Theories (1980) Phys. Rev. D, 22, p. 2227. , [INSPIRE]
dc.relation.referencesSchechter, J., Valle, J.W.F., Neutrino Oscillation Thought Experiment (1981) Phys. Rev. D, 23, p. 1666. , [INSPIRE]
dc.relation.referencesRodejohann, W., Valle, J.W.F., Symmetrical Parametrizations of the Lepton Mixing Matrix (2011) Phys. Rev. D, 84. , [] [INSPIRE]
dc.relation.referencesDell’Oro, S., Marcocci, S., Viel, M., Vissani, F., Neutrinoless double beta decay: 2015 review (2016) Adv. High Energy Phys., 2016, p. 2162659. , [] [INSPIRE]
dc.relation.referencesProbing Majorana neutrinos with double-β decay (2019) Science, 365, p. 1445. , INSPIRE
dc.relation.referencesImproved Limit on Neutrinoless Double-Beta Decay in130 Te with CUORE (2020) Phys. Rev. Lett., 124. , INSPIRE
dc.relation.referencesSearch for Majorana Neutrinos near the Inverted Mass Hierarchy Region with KamLAND-Zen (2016) Phys. Rev. Lett, 117. , Addendum ibid. 117 (2016) 109903, INSPIRE
dc.relation.referencesCaldwell, A., Merle, A., Schulz, O., Totzauer, M., Global Bayesian analysis of neutrino mass data (2017) Phys. Rev. D, 96. , [] [INSPIRE]
dc.relation.referencesVergados, J.D., Ejiri, H., Šimkovic, F., Neutrinoless double beta decay and neutrino mass (2016) Int. J. Mod. Phys. E, 25, p. 1630007. , [] [INSPIRE]
dc.relation.referencesGariazzo, S., Mena, O., Cosmology-marginalized approaches in Bayesian model comparison: The neutrino mass as a case study (2019) Phys. Rev. D, 99. , [] [INSPIRE]
dc.relation.referencesLattanzi, M., Gerbino, M., Status of neutrino properties and future prospects — Cosmological and astrophysical constraints (2018) Front. in Phys., 5, p. 70. , [] [INSPIRE]
dc.relation.referencesPlanck 2018 results. I. Overview and the cosmological legacy of Planck (2020) Astron. Astrophys., 641, p. A1. , INSPIRE
dc.relation.referencesPlanck 2018 results. VI. Cosmological parameters (2020) Astron. Astrophys, 641
dc.relation.referencesPlanck 2018 results. V. CMB power spectra and likelihoods (2020) Astron. Astrophys., 641, p. A5. , INSPIRE
dc.relation.referencesPlanck 2018 results. VIII. Gravitational lensing (2020) Astron. Astrophys, 641
dc.relation.referencesBeutler, F., The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant (2011) Mon. Not. Roy. Astron. Soc., 416, p. 3017. , (,), [arXiv:, 1106.3366,] [, INSPIRE,]
dc.relation.referencesRoss, A.J., Samushia, L., Howlett, C., Percival, W.J., Burden, A., Manera, M., The clustering of the SDSS DR7 main Galaxy sample — I. A 4 per cent distance measure at z = 0.15 (2015) Mon. Not. Roy. Astron. Soc., 449, p. 835. , INSPIRE
dc.relation.referencesThe clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological analysis of the DR12 galaxy sample (2017) Mon. Not. Roy. Astron. Soc., 470, p. 2617. , INSPIRE
dc.relation.referencesMoresco, M., A 6% measurement of the Hubble parameter at z ∼ 0.45: direct evidence of the epoch of cosmic re-acceleration (2016) JCAP, (5), p. 014. , (,), [arXiv:, 1601.01701,] [, INSPIRE,]
dc.relation.referencesScolnic, D.M., The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample (2018) Astrophys. J., 859, p. 101. , (,), [arXiv:, 1710.00845,] [, INSPIRE,]
dc.relation.referencesRiess, A.G., Casertano, S., Yuan, W., Macri, L.M., Scolnic, D., Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM (2019) Astrophys. J., 876, p. 85. , [] [INSPIRE]
dc.relation.referencesLesgourgues, J., Tram, T., Fast and accurate CMB computations in non-flat FLRW universes (2014) JCAP, 9, p. 032. , [] [INSPIRE]
dc.relation.referencesBlas, D., Lesgourgues, J., Tram, T., The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes (2011) JCAP, 7, p. 034. , [] [INSPIRE]
dc.relation.referencesLesgourgues, J., The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview
dc.relation.referencesAstone, P., Dagostini, G., Inferring the Intensity of Poisson Processes at the Limit of the Detector Sensitivity (With a Case Study on Gravitational Wave Burst Search)
dc.relation.referencesDagostini, G., (2000) Confidence Limits: What Is the Problem? Is There the Solution?, in Workshop on Confidence Limits, pp. 3-27
dc.relation.referencesD’Agostini, G., (2003) Bayesian Reasoning in Data Analysis, , World Scientific
dc.relation.referencesGariazzo, S., Constraining power of open likelihoods, made prior-independent (2020) Eur. Phys. J. C, 80, p. 552. , [] [INSPIRE]
dc.relation.referencesVagnozzi, S., Dhawan, S., Gerbino, M., Freese, K., Goobar, A., Mena, O., Constraints on the sum of the neutrino masses in dynamical dark energy models with w(z) ≥ −1 are tighter than those obtained in ΛCDM (2018) Phys. Rev. D, 98. , [] [INSPIRE]
dc.relation.referencesVagnozzi, S., Unveiling ν secrets with cosmological data: neutrino masses and mass hierarchy (2017) Phys. Rev. D, 96. , [] [INSPIRE]
dc.relation.referencesGiusarma, E., Gerbino, M., Mena, O., Vagnozzi, S., Ho, S., Freese, K., Improvement of cosmological neutrino mass bounds (2016) Phys. Rev. D, 94. , [] [INSPIRE]
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record