Mostrar el registro sencillo del ítem

dc.contributor.authorRoth N
dc.contributor.authorJaramillo F
dc.contributor.authorWang-Erlandsson L
dc.contributor.authorZamora D
dc.contributor.authorPalomino-Ángel S
dc.contributor.authorCousins S.A.O.
dc.date.accessioned2022-09-14T14:33:25Z
dc.date.available2022-09-14T14:33:25Z
dc.date.created2021
dc.identifier.issn20472382
dc.identifier.urihttp://hdl.handle.net/11407/7361
dc.descriptionOngoing and future hydroclimatic changes have large environmental and societal impacts. In terrestrial ecosystems, these changes are usually described with the terms ‘wetter’ and ‘drier’, which refer to the change in the quantity and/or presence of water, either as water fluxes or stocks. We conducted a literature review of almost 500 recent climate change studies to quantitatively investigate the consistency of the use of these terms across disciplines, regarding the hydroclimatic variables they are related to. We found that although precipitation is prevalently used to describe ‘wetter’ and ‘drier’ conditions, many other variables are also used to refer to changes in water availability between research fields, pointing to a varied perspective on the use of these terms. Some studies do not define the terms at all. In order to facilitate meta-analyses across disciplines, we therefore highlight the need to explicitly state which hydroclimatic variables authors are referring to. In this way, we hope that the terms ‘wetter’ and ‘drier’ used in scientific studies are easier to relate to hydroclimatic processes, which should facilitate the application by authorities and policy makers. © 2021, The Author(s).eng
dc.language.isoeng
dc.publisherBioMed Central Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85103556012&doi=10.1186%2fs13750-021-00224-0&partnerID=40&md5=45b786d0dd68d5bbb43096dd3d81d862
dc.sourceEnvironmental Evidence
dc.titleA call for consistency with the terms ‘wetter’ and ‘drier’ in climate change studies
dc.typeNote
dc.typeother
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambiental
dc.type.spaOtro
dc.identifier.doi10.1186/s13750-021-00224-0
dc.subject.keywordDefinitionseng
dc.subject.keywordEcosystemseng
dc.subject.keywordHydroclimatic variableseng
dc.subject.keywordMultidisciplinaryeng
dc.relation.citationvolume10
dc.relation.citationissue1
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationRoth, N., Department of Physical Geography, Stockholm University, Stockholm, Sweden, Bolin Centre for Climate Research, Stockholm, Sweden
dc.affiliationJaramillo, F., Department of Physical Geography, Stockholm University, Stockholm, Sweden, Bolin Centre for Climate Research, Stockholm, Sweden, Baltic Sea Centre, Stockholm University, Stockholm, Sweden
dc.affiliationWang-Erlandsson, L., Bolin Centre for Climate Research, Stockholm, Sweden, Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
dc.affiliationZamora, D., Civil and Agricultural Department, Universidad Nacional de Colombia, Bogotá, Colombia
dc.affiliationPalomino-Ángel, S., Facultad de Ingeniería, Universidad de San Buenaventura, Medellín, Colombia, Facultad de Ingeniería, Universidad de Medellín, Medellín, Colombia
dc.affiliationCousins, S.A.O., Department of Physical Geography, Stockholm University, Stockholm, Sweden, Bolin Centre for Climate Research, Stockholm, Sweden
dc.relation.referencesOki, T., Kanae, S., Global hydrological cycles and world water resources (2006) Science, 313 (5790), pp. 1068-1072. , COI: 1:CAS:528:DC%2BD28XotlCgtbg%3D
dc.relation.referencesYoung, G., Demuth, S., Mishra, A., Cudennec, C., Hydrological sciences and water security: an overview (2015) Proc IAHS, 366, pp. 1-9
dc.relation.referencesDiffenbaugh, N.S., Giorgi, F., Climate change hotspots in the CMIP5 global climate model ensemble (2012) Clim Chang, 114 (3), pp. 813-822
dc.relation.referencesHuntington, T.G., Evidence for intensification of the global water cycle: review and synthesis (2006) J Hydrol, 319 (1), pp. 83-95
dc.relation.referencesMilly, P.C.D., Wetherald, R.T., Dunne, K.A., Delworth, T.L., Increasing risk of great floods in a changing climate (2002) Nature, 415 (6871), pp. 514-517. , COI: 1:CAS:528:DC%2BD38Xht1Git7w%3D
dc.relation.referencesRawlins, M.A., Steele, M., Holland, M.M., Adam, J.C., Cherry, J.E., Francis, J.A., Analysis of the arctic system for freshwater cycle intensification: observations and expectations (2010) J Clim, 23 (21), pp. 5715-5737
dc.relation.referencesBerghuijs, W.R., Woods, R.A., Hrachowitz, M., A precipitation shift from snow towards rain leads to a decrease in streamflow (2014) Nature Clim Chang, 4 (7), pp. 583-586
dc.relation.referencesWada, Y., van Beek, L.P.H., Wanders, N., Bierkens, M.F.P., Human water consumption intensifies hydrological drought worldwide (2013) Environ Res Lett, 8 (3), p. 034036
dc.relation.referencesGreve, P., Orlowsky, B., Mueller, B., Sheffield, J., Reichstein, M., Seneviratne, S.I., Global assessment of trends in wetting and drying over land (2014) Nat Geosci, 7 (10), pp. 716-721. , COI: 1:CAS:528:DC%2BC2cXhsFOltL7K
dc.relation.referencesTrenberth, K.E., Changes in precipitation with climate change (2011) Clim Res, 47 (1-2), pp. 123-138
dc.relation.referencesChou, C., Chiang, J.C.H., Lan, C.-W., Chung, C.-H., Liao, Y.-C., Lee, C.-J., Increase in the range between wet and dry season precipitation (2013) Nat Geosci, 6 (4), pp. 263-267. , COI: 1:CAS:528:DC%2BC3sXjtlKnu7g%3D
dc.relation.referencesHeld, I.M., Soden, B.J., Robust responses of the hydrological cycle to global warming (2006) J Clim, 19 (21), pp. 5686-5699
dc.relation.referencesLiu, C., Allan, R.P., Observed and simulated precipitation responses in wet and dry regions 1850–2100 (2013) Environ Res Lett, 8 (3), p. 034002
dc.relation.referencesSun, F., Roderick, M.L., Farquhar, G.D., Changes in the variability of global land precipitation (2012) Geophys Res Lett, 39 (19), p. L19402
dc.relation.referencesByrne, M.P., O’Gorman, P.A., The response of precipitation minus evapotranspiration to climate warming: why the “wet-get-wetter, dry-get-drier” scaling does not hold over land (2015) J Clim, 28 (20), pp. 8078-8092
dc.relation.referencesFeng, H., Zhang, M., Global land moisture trends: drier in dry and wetter in wet over land (2015) Sci Rep, 5, p. 18018. , COI: 1:CAS:528:DC%2BC2MXitVWqsrbI
dc.relation.referencesRoderick, M., Sun, F., Lim, W.H., Farquhar, G., A general framework for understanding the response of the water cycle to global warming over land and ocean (2014) Hydrol Earth Syst Sci, 18, pp. 1575-1589
dc.relation.referencesAllan, R.P., Liu, C., Zahn, M., Lavers, D.A., Koukouvagias, E., Bodas-Salcedo, A., Physically consistent responses of the global atmospheric hydrological cycle in models and observations (2014) Surv Geophys, 35 (3), pp. 533-552
dc.relation.referencesLavers, D.A., Ralph, F.M., Waliser, D.E., Gershunov, A., Dettinger, M.D., Climate change intensification of horizontal water vapor transport in CMIP5 (2015) Geophys Res Lett, 42 (13), pp. 5617-5625
dc.relation.referencesDonat, M.G., Lowry, A.L., Alexander, L.V., O’Gorman, P.A., Maher, N., More extreme precipitation in the world’s dry and wet regions (2016) Nat Clim Chang, 6 (5), pp. 508-513
dc.relation.referencesGloor, M., Brienen, R.J.W., Galbraith, D., Feldpausch, T.R., Schöngart, J., Guyot, J.-L., Intensification of the Amazon hydrological cycle over the last two decades (2013) Geophys Res Lett, 40 (9), pp. 1729-1733
dc.relation.referencesZiegler, A.D., Sheffield, J., Maurer, E.P., Nijssen, B., Wood, E.F., Lettenmaier, D.P., Detection of intensification in global- and continental-scale hydrological cycles: temporal scale of evaluation (2003) J Clim, 16 (3), pp. 535-547
dc.relation.referencesDirmeyer, P.A., Yu, L., Amini, S., Crowell, A.D., Elders, A., Wu, J., Projections of the shifting envelope of water cycle variability (2016) Clim Change, 136 (3), pp. 587-600
dc.relation.referencesLabat, D., Goddéris, Y., Probst, J.L., Guyot, J.L., Evidence for global runoff increase related to climate warming (2004) Adv Water Resour, 27 (6), pp. 631-642
dc.relation.referencesBosson, E., Sabel, U., Gustafsson, L.G., Sassner, M., Destouni, G., Influences of shifts in climate, landscape, and permafrost on terrestrial hydrology (2012) J Geophys Res Atmos, 117 (5), pp. 1-12
dc.relation.referencesKatul, G.G., Oren, R., Manzoni, S., Higgins, C., Parlange, M.B., Evapotranspiration: a process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system (2012) Rev Geophys, 50 (3), p. RG3002
dc.relation.referencesSherwood, S., Fu, Q., A drier future? (2014) Science, 343 (6172), pp. 737-739. , COI: 1:CAS:528:DC%2BC2cXjvVOiurY%3D
dc.relation.referencesDracup, J.A., Lee, K.S., Paulson, E.G., On the definition of droughts (1980) Water Resour Res, 16 (2), pp. 297-302
dc.relation.referencesWilhite, D.A., Glantz, M.H., Understanding: the drought phenomenon: the role of definitions (1985) Water Int, 10 (3), pp. 111-120
dc.relation.referencesSlette, I.J., Post, A.K., Awad, M., Even, T., Punzalan, A., Williams, S., How ecologists define drought, and why we should do better (2019) Glob Change Biol, 25 (10), pp. 3193-3200
dc.relation.referencesHu, Z., Chen, X., Chen, D., Li, J., Wang, S., Zhou, Q., Dry gets drier, wet gets wetter”: a case study over the arid regions of central Asia (2019) Int J Climatol, 39 (2), pp. 1072-1091
dc.relation.referencesBowman, T.E., Maibach, E., Mann, M.E., Moser, S.C., Somerville, R.C.J., Creating a common climate language (2009) Science, 324 (5923), pp. 36-37. , COI: 1:CAS:528:DC%2BD1MXkt1WrsLw%3D
dc.relation.referencesHerrando-Pérez, S., Brook, B.W., Bradshaw, C.J.A., Ecology needs a convention of nomenclature (2014) Bioscience, 64 (4), pp. 311-321
dc.relation.referencesLinderholm, H.W., Nicolle, M., Francus, P., Gajewski, K., Helama, S., Korhola, A., Arctic hydroclimate variability during the last 2000 years: current understanding and research challenges (2018) Clim Past, 14 (4), pp. 473-514
dc.relation.referencesSchneider, H.E., Mazer, S.J., Geographic variation in climate as a proxy for climate change: forecasting evolutionary trajectories from species differentiation and genetic correlations (2016) Am J Bot, 103 (1), pp. 140-152
dc.relation.referencesEller, A.S., Young, L.L., Trowbridge, A.M., Monson, R.K., Differential controls by climate and physiology over the emission rates of biogenic volatile organic compounds from mature trees in a semi-arid pine forest (2016) Oecologia, 180 (2), pp. 345-358
dc.relation.referencesKrab, E.J., Cornelissen, J.H.C., Berg, M.P., A simple experimental set-up to disentangle the effects of altered temperature and moisture regimes on soil organisms (2015) Methods Ecol Evol, 6 (10), pp. 1159-1168
dc.relation.referencesBanasik, K., Hejduk, L., Long-term changes in runoff from a small agricultural catchment (2012) Soil Water Res, 7 (2), pp. 64-72
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/other
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem