Show simple item record

dc.contributor.authorUgarte J.P
dc.contributor.authorTobón C
dc.contributor.authorTenreiro Machado J.A.
dc.date.accessioned2022-09-14T14:33:26Z
dc.date.available2022-09-14T14:33:26Z
dc.date.created2022
dc.identifier.issn0307904X
dc.identifier.urihttp://hdl.handle.net/11407/7362
dc.descriptionThe excessive proliferation of fibroblasts causes fibrosis, a hallmark of atrial fibrillation (AF), and leads to alterations in the electrical conduction within the heart. However, the underlying electrophysiological mechanisms behind the multifactorial characteristic of AF fibrosis are not fully understood. This work studies the electrophysiological properties of different fibrosis configurations using computational simulations. For this purpose, the intermingling action of the structural and electrical remodeling due to fibroblasts are implemented in an electrophysiological description of the AF fibrosis. The model is built on the base of complex order operators and a fibroblast ionic formulation. Additionally, three fibrosis textures are considered for designing the atrial tissue representations. The resting and depolarization properties are analyzed by means of information theory and multidimensional scaling. The results evinced that the modulation of cardiomyocytes resting potential, exerted by the fibroblasts, is the mechanism giving rise to emergent electrophysiological properties as a result of the synergetic mathematical formulation of the proposed fibrosis model. The metrics assessing such properties unravel distinctive signatures of each fibrosis texture. Additionally, the multidimensional scaling computational tool reveals clusters specifically determined by the resting and depolarization properties, or by their combination. The observed clusters support an electrophysiological interpretation through the underlying fibrosis configuration, in which the diffuse, patchy and compact textures are relevant in determining the emergent patterns. © 2022 Elsevier Inc.eng
dc.language.isoeng
dc.publisherElsevier Inc.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85123362497&doi=10.1016%2fj.apm.2021.12.049&partnerID=40&md5=a42a696104b375cc97751fb61f051633
dc.sourceApplied Mathematical Modelling
dc.titleA computational view of electrophysiological properties under different atrial fibrosis conditions
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicas
dc.type.spaArtículo
dc.identifier.doi10.1016/j.apm.2021.12.049
dc.subject.keywordCardiac computationeng
dc.subject.keywordClusteringeng
dc.subject.keywordComplex order operatorseng
dc.subject.keywordFibroblastseng
dc.subject.keywordFractional calculuseng
dc.subject.keywordMultidimensional scalingeng
dc.subject.keywordCell cultureeng
dc.subject.keywordComputation theoryeng
dc.subject.keywordDepolarizationeng
dc.subject.keywordElectrophysiologyeng
dc.subject.keywordFibroblastseng
dc.subject.keywordInformation theoryeng
dc.subject.keywordTextureseng
dc.subject.keywordAtrial fibrillationeng
dc.subject.keywordCardiac computationeng
dc.subject.keywordClusteringseng
dc.subject.keywordComplex order operatoreng
dc.subject.keywordConditioneng
dc.subject.keywordElectrical conductioneng
dc.subject.keywordElectrophysiological propertieseng
dc.subject.keywordFractional calculuseng
dc.subject.keywordMulti-dimensional scalingeng
dc.subject.keywordPropertyeng
dc.subject.keywordCalculationseng
dc.relation.citationvolume105
dc.relation.citationstartpage534
dc.relation.citationendpage550
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationUgarte, J.P., GIMSC, Universidad de San Buenaventura, Medellín, Colombia
dc.affiliationTobón, C., MATBIOM, Universidad de Medellín, Medellín, Colombia
dc.affiliationTenreiro Machado, J.A., Department of Electrical Engineering, Institute of Engineering, Polytechnic of Porto, Porto, Portugal
dc.relation.referencesPellman, J., Zhang, J., Sheikh, F., Myocyte-fibroblast communication in cardiac fibrosis and arrhythmias: mechanisms and model systems (2016) J. Mol. Cell. Cardiol., 94, pp. 22-31
dc.relation.referencesSohns, C., Marrouche, N.F., Atrial fibrillation and cardiac fibrosis (2020) Eur. Heart J., 41 (10), pp. 1123-1131
dc.relation.referencesHeijman, J., Linz, D., Schotten, U., Dynamics of atrial fibrillation mechanisms and comorbidities (2021) Annu. Rev. Physiol., 83, pp. 83-106
dc.relation.referencesGoette, A., Kalman, J.M., Aguinaga, L., Akar, J., Cabrera, J.A., Chen, S.A., Chugh, S.S., Nattel, S., EHRA/HRS/APHRS/SOLAECE expert consensus on atrial cardiomyopathies: definition, characterization, and clinical implication (2016) Europace, 18 (10), pp. 1455-1490
dc.relation.referencesBoyle, P.M., Yu, J., Klimas, A., Williams, J.C., Trayanova, N.A., Entcheva, E., OptoGap is an optogenetics-enabled assay for quantification of cell–cell coupling in multicellular cardiac tissue (2021) Sci. Rep., 11 (1), pp. 1-15
dc.relation.referencesQuinn, T.A., Camelliti, P., Rog-Zielinska, E.A., Siedlecka, U., Poggioli, T., O'Toole, E.T., Knöpfel, T., Kohl, P., Electrotonic coupling of excitable and nonexcitable cells in the heart revealed by optogenetics (2016) Proc. Natl. Acad. Sci., 113 (51), pp. 14852-14857
dc.relation.referencesRook, M.B., van Ginneken, A.C., de Jonge, B., el Aoumari, A., Gros, D., Jongsma, H.J., Differences in gap junction channels between cardiac myocytes, fibroblasts, and heterologous pairs (1992) Am. J. Physiol. - Cell Physiol., 263 (5), pp. C959-C977
dc.relation.referencesMiragoli, M., Gaudesius, G., Rohr, S., Electrotonic modulation of cardiac impulse conduction by myofibroblasts (2006) Circ. Res., 98 (6), pp. 801-810
dc.relation.referencesGaudesius, G., Miragoli, M., Thomas, S.P., Rohr, S., Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin (2003) Circ. Res., 93, pp. 421-428
dc.relation.referencesTanaka, K., Zlochiver, S., Vikstrom, K.L., Yamazaki, M., Moreno, J., Klos, M., Zaitsev, A.V., Kalifa, J., Spatial distribution of fibrosis governs fibrillation wave dynamics in the posterior left atrium during heart failure (2007) Circ. Res., 101, pp. 839-847
dc.relation.referencesde Jong, S., van Veen, T.A.B., van Rijen, H.V.M., de Bakker, J.M.T., Fibrosis and cardiac arrhythmias (2011) J. Cardiovasc. Pharmacol., 57, pp. 630-638
dc.relation.referencesAmuzescu, B., Airini, R., Epureanu, F.B., Mann, S.A., Knott, T., Radu, B.M., Evolution of mathematical models of cardiomyocyte electrophysiology (2021) Math. Biosci., 334 (October 2020), p. 108567
dc.relation.referencesClayton, R.H., Bernus, O., Cherry, E.M., Dierckx, H., Fenton, F.H., Mirabella, L., Panfilov, A.V., Zhang, H., Models of cardiac tissue electrophysiology: progress, challenges and open questions (2011) Prog. Biophys. Mol. Biol., 104, pp. 22-48
dc.relation.referencesHeijman, J., Sutanto, H., Crijns, H.J.G.M., Nattel, S., Trayanova, N.A., Computational models of atrial fibrillation: achievements, challenges, and perspectives for improving clinical care (2021) Cardiovasc. Res., 117 (7), pp. 1682-1699. , https://academic.oup.com/cardiovascres/article/117/7/1682/6247759
dc.relation.referencesNezlobinsky, T., Solovyova, O., Panfilov, A.V., Anisotropic conduction in the myocardium due to fibrosis: the effect of texture on wave propagation (2020) Sci. Rep., 10 (1), pp. 1-12
dc.relation.referencesFalkenberg, M., Ford, A.J., Li, A.C., Lawrence, R., Ciacci, A., Peters, N.S., Christensen, K., Unified mechanism of local drivers in a percolation model of atrial fibrillation (2019) Phys. Rev. E, 100 (6), p. 62406
dc.relation.referencesKudryashova, N., Nizamieva, A., Tsvelaya, V., Panfilov, A., Agladze, K., Self-organization of conducting pathways explains electrical wave propagation in cardiac tissues with high fibrosis (2019) PLoS ONE, 15 (3), p. e1006597.
dc.relation.referencesRoney, C.H., Bayer, J.D., Cochet, H., Meo, M., Dubois, R., Jaïs, P., Vigmond, E.J., Variability in pulmonary vein electrophysiology and fibrosis determines arrhythmia susceptibility and dynamics (2018) PLoS Comput. Biol., 14 (5), pp. 1-19
dc.relation.referencesGodoy, E.J., Lozano, M., García-Fernández, I., Ferrer-Albero, A., MacLeod, R., Saiz, J., Sebastian, R., Atrial fibrosis hampers non-invasive localization of atrial ectopic foci from multi-electrode signals: a 3D simulation study (2018) Front. Physiol., 9 (MAY)
dc.relation.referencesDeng, D., Murphy, M.J., Hakim, J.B., Franceschi, W.H., Zahid, S., Pashakhanloo, F., Trayanova, N.A., Boyle, P.M., Sensitivity of reentrant driver localization to electrophysiological parameter variability in image-based computational models of persistent atrial fibrillation sustained by a fibrotic substrate (2017) Chaos, 27 (9), p. 093932
dc.relation.referencesGao, Y., Gong, Y., Xia, L., Simulation of atrial fibrosis using coupled myocyte-fibroblast cellular and human atrial models (2017) Comput. Math. Methods Med., 2017, pp. 1-10
dc.relation.referencesMorgan, R., Colman, M.A., Chubb, H., Seemann, G., Aslanidi, O.V., Slow conduction in the border zones of patchy fibrosis stabilizes the drivers for atrial fibrillation: Insights from multi-scale human atrial modeling (2016) Front. Physiol., 7 (OCT), pp. 1-15
dc.relation.referencesTrayanova, N.A., Boyle, P.M., Arevalo, H.J., Zahid, S., Exploring susceptibility to atrial and ventricular arrhythmias resulting from remodeling of the passive electrical properties in the heart: a simulation approach (2014) Front. Physiol., 5, p. 435
dc.relation.referencesAshihara, T., Haraguchi, R., Nakazawa, K., Namba, T., Ikeda, T., Nakazawa, Y., Ozawa, T., Trayanova, N.A., The role of fibroblasts in complex fractionated electrograms during persistent/permanent atrial fibrillation: implications for electrogram-based catheter ablation (2012) Circ. Res., 110 (2), pp. 275-284
dc.relation.referencesKlesen, A., Jakob, D., Emig, R., Kohl, P., Ravens, U., Peyronnet, R., Cardiac fibroblasts (2018) Herzschrittmachertherapie + Elektrophysiologie, 29 (1), pp. 62-69
dc.relation.referencesSamko, S., Kilbas, A.A., Marichev, O., Fractional Integrals and Derivatives (1993), https://books.google.com.co/books?id=SO3FQgAACAAJ, Taylor & Francis
dc.relation.referencesOldham, K.B., Spanier, J., The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order (2006) Dover books on mathematics, , https://books.google.com.co/books?id=yh68AAAACAAJ, Dover Publications
dc.relation.referencesCaptur, G., Karperien, A.L., Hughes, A.D., Francis, D.P., Moon, J.C., The fractal heart-embracing mathematics in the cardiology clinic (2016) Nat. Rev. Cardiol., 14 (1), pp. 56-64
dc.relation.referencesCross, S.S., Fractals in pathology (1997) J. Pathol., 182 (1), pp. 1-8
dc.relation.referencesFuseler, J.W., Millette, C.F., Davis, J.M., Carver, W., Fractal and image analysis of morphological changes in the actin cytoskeleton of neonatal cardiac fibroblasts in response to mechanical stretch (2007) Microsc. Microanal., 13 (2), pp. 133-143
dc.relation.referencesZouein, F.A., Kurdi, M., Booz, G.W., Fuseler, J.W., Applying fractal dimension and image analysis to quantify fibrotic collagen deposition and organization in the normal and hypertensive heart (2014) Microsc. Microanal., 20 (4), pp. 1134-1144
dc.relation.referencesUgarte, J.P., Tobón, C., Lopes, A.M., Tenreiro Machado, J.A., Atrial rotor dynamics under complex fractional order diffusion (2018) Front. Physiol., 9, pp. 1-14
dc.relation.referencesUgarte, J.P., Tobón, C., Lopes, A.M., Machado, J.A.T., A complex order model of atrial electrical propagation from fractal porous cell membrane (2020) Fractals, 28 (6), p. 2050106
dc.relation.referencesCourtemanche, M., Ramirez, R.J., Nattel, S., Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model (1998) Am. J. Physiol., 275, pp. H301-21
dc.relation.referencesMaleckar, M.M., Greenstein, J.L., Giles, W.R., Trayanova, N.A., Electrotonic coupling between human atrial myocytes and fibroblasts alters myocyte excitability and repolarization (2009) Biophys. J., 97, pp. 2179-2190
dc.relation.referencesBosch, R.F., Zeng, X., Grammer, J.B., Popovic, K., Mewis, C., Kühlkamp, V., Ionic mechanisms of electrical remodeling in human atrial fibrillation (1999) Cardiovasc. Res., 44 (1), pp. 121-131
dc.relation.referencesDobrev, D., Graf, E., Wettwer, E., Himmel, H.M., Hála, O., Doerfel, C., Christ, T., Ravens, U., Molecular basis of downregulation of g-protein–coupled inward rectifying K+ current (IK,ACh) in chronic human atrial fibrillation (2001) Circulation, 104 (21), pp. 2551-2557
dc.relation.referencesVan Wagoner, D.R., Pond, A.L., McCarthy, P.M., Trimmer, J.S., Nerbonne, J.M., Outward K+ current densities and kv1.5 expression are reduced in chronic human atrial fibrillation (1997) Circ. Res., 80 (6), pp. 772-781
dc.relation.referencesKneller, J., Zou, R., Vigmond, E.J., Wang, Z., Leon, L.J., Nattel, S., Cholinergic atrial fibrillation in a computer model of a two-dimensional sheet of canine atrial cells with realistic ionic properties (2002) Circ. Res., 90 (9), pp. 73e-87
dc.relation.referencesZheng, Y., Xia, Y., Carlson, J., Kongstad, O., Yuan, S., Atrial average conduction velocity in patients with and without paroxysmal atrial fibrillation (2017) Clin. Physiol. Funct. Imaging, 37 (6), pp. 596-601
dc.relation.referencesDi Biase, L., Burkhardt, J.D., Mohanty, P., Mohanty, S., Sanchez, J.E., Trivedi, C., Güneş, M., Natale, A., Left atrial appendage isolation in patients with longstanding persistent AF undergoing catheter ablation: BELIEF trial (2016) J. Am. Coll. Cardiol., 68 (18), pp. 1929-1940
dc.relation.referencesMann, I., Linton, N.W.F., Coyle, C., Howard, J.P., Fudge, M., Lim, E., Qureshi, N., Kanagaratnam, P., RETRO-MAPPING: a new approach to activation mapping in persistent atrial fibrillation reveals evidence of spatiotemporal stability (2021) Circ. Arrhythmia Electrophysiol., 14 (6), pp. 578-589
dc.relation.referencesMachado, J.T., Fractional order generalized information (2014) Entropy, 16 (4), pp. 2350-2361
dc.relation.referencesLopes, A.M., Tenreiro Machado, J.A., A review of fractional order entropies (2020) Entropy, 22 (12), pp. 1-17
dc.relation.referencesValério, D., Lopes, A., Tenreiro Machado, J., Entropy analysis of a railway network's complexity (2016) Entropy, 18 (11), p. 388
dc.relation.referencesBorg, I., Groenen, P.J.F., Mair, P., Applied Multidimensional Scaling and Unfolding (2018) SpringerBriefs in Statistics, , Springer International Publishing
dc.relation.referencesUgarte, J.P., Tobón, C., Saiz, J., Lopes, A.M., Tenreiro Machado, J.A., Spontaneous activation under atrial fibrosis: a model using complex order derivatives (2021) Commun. Nonlin. Sci. Numer.Simul., 95, p. 105618
dc.relation.referencesKostecki, G.M., Shi, Y., Chen, C.S., Reich, D.H., Entcheva, E., Tung, L., Optogenetic current in myofibroblasts acutely alters electrophysiology and conduction of co-cultured cardiomyocytes (2021) Sci. Rep., 11 (1), pp. 1-12
dc.relation.referencesRohr, S., Schölly, D.M., Kléber, A.G., Patterned growth of neonatal rat heart cells in culture. Morphological and electrophysiological characterization (1991) Circ. Res., 68 (1), pp. 114-130
dc.relation.referencesHansen, B.J., Zhao, J., Fedorov, V.V., Fibrosis and atrial fibrillation: computerized and optical mapping (2017) JACC Clin. Electrophysiol., 3 (6), pp. 531-546
dc.relation.referencesRoy, A., Varela, M., Aslanidi, O., Image-based computational evaluation of the effects of atrial wall thickness and fibrosis on re-entrant drivers for atrial fibrillation (2018) Front. Physiol., 9 (OCT), pp. 1-16
dc.relation.referencesSaha, M., Roney, C.H., Bayer, J.D., Meo, M., Cochet, H., Dubois, R., Vigmond, E.J., Wavelength and fibrosis affect phase singularity locations during atrial fibrillation (2018) Front. Physiol., 9 (SEP), pp. 1-12
dc.relation.referencesSutanto, H., Cluitmans, M.J.M., Dobrev, D., Volders, P.G.A., Bébarová, M., Heijman, J., Acute effects of alcohol on cardiac electrophysiology and arrhythmogenesis: insights from multiscale in silico analyses (2020) J. Mol. Cell. Cardiol., 146 (May), pp. 69-83
dc.relation.referencesNguyen, T.P., Qu, Z., Weiss, J.N., Cardiac fibrosis and arrhythmogenesis: the road to repair is paved with perils (2014) J. Mol. Cell. Cardiol., 70, pp. 83-91
dc.relation.referencesPalacio, L.C., Ugarte, J.P., Saiz, J., Tobón, C., The effects of fibrotic cell type and its density on atrial fibrillation dynamics: an in silico study (2021) Cells, 10 (10), p. 2769
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record