dc.contributor.author | Ugarte J.P | |
dc.contributor.author | Tobón C | |
dc.contributor.author | Tenreiro Machado J.A. | |
dc.date.accessioned | 2022-09-14T14:33:26Z | |
dc.date.available | 2022-09-14T14:33:26Z | |
dc.date.created | 2022 | |
dc.identifier.issn | 0307904X | |
dc.identifier.uri | http://hdl.handle.net/11407/7362 | |
dc.description | The excessive proliferation of fibroblasts causes fibrosis, a hallmark of atrial fibrillation (AF), and leads to alterations in the electrical conduction within the heart. However, the underlying electrophysiological mechanisms behind the multifactorial characteristic of AF fibrosis are not fully understood. This work studies the electrophysiological properties of different fibrosis configurations using computational simulations. For this purpose, the intermingling action of the structural and electrical remodeling due to fibroblasts are implemented in an electrophysiological description of the AF fibrosis. The model is built on the base of complex order operators and a fibroblast ionic formulation. Additionally, three fibrosis textures are considered for designing the atrial tissue representations. The resting and depolarization properties are analyzed by means of information theory and multidimensional scaling. The results evinced that the modulation of cardiomyocytes resting potential, exerted by the fibroblasts, is the mechanism giving rise to emergent electrophysiological properties as a result of the synergetic mathematical formulation of the proposed fibrosis model. The metrics assessing such properties unravel distinctive signatures of each fibrosis texture. Additionally, the multidimensional scaling computational tool reveals clusters specifically determined by the resting and depolarization properties, or by their combination. The observed clusters support an electrophysiological interpretation through the underlying fibrosis configuration, in which the diffuse, patchy and compact textures are relevant in determining the emergent patterns. © 2022 Elsevier Inc. | eng |
dc.language.iso | eng | |
dc.publisher | Elsevier Inc. | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123362497&doi=10.1016%2fj.apm.2021.12.049&partnerID=40&md5=a42a696104b375cc97751fb61f051633 | |
dc.source | Applied Mathematical Modelling | |
dc.title | A computational view of electrophysiological properties under different atrial fibrosis conditions | |
dc.type | Article | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Ciencias Básicas | |
dc.type.spa | Artículo | |
dc.identifier.doi | 10.1016/j.apm.2021.12.049 | |
dc.subject.keyword | Cardiac computation | eng |
dc.subject.keyword | Clustering | eng |
dc.subject.keyword | Complex order operators | eng |
dc.subject.keyword | Fibroblasts | eng |
dc.subject.keyword | Fractional calculus | eng |
dc.subject.keyword | Multidimensional scaling | eng |
dc.subject.keyword | Cell culture | eng |
dc.subject.keyword | Computation theory | eng |
dc.subject.keyword | Depolarization | eng |
dc.subject.keyword | Electrophysiology | eng |
dc.subject.keyword | Fibroblasts | eng |
dc.subject.keyword | Information theory | eng |
dc.subject.keyword | Textures | eng |
dc.subject.keyword | Atrial fibrillation | eng |
dc.subject.keyword | Cardiac computation | eng |
dc.subject.keyword | Clusterings | eng |
dc.subject.keyword | Complex order operator | eng |
dc.subject.keyword | Condition | eng |
dc.subject.keyword | Electrical conduction | eng |
dc.subject.keyword | Electrophysiological properties | eng |
dc.subject.keyword | Fractional calculus | eng |
dc.subject.keyword | Multi-dimensional scaling | eng |
dc.subject.keyword | Property | eng |
dc.subject.keyword | Calculations | eng |
dc.relation.citationvolume | 105 | |
dc.relation.citationstartpage | 534 | |
dc.relation.citationendpage | 550 | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.affiliation | Ugarte, J.P., GIMSC, Universidad de San Buenaventura, Medellín, Colombia | |
dc.affiliation | Tobón, C., MATBIOM, Universidad de Medellín, Medellín, Colombia | |
dc.affiliation | Tenreiro Machado, J.A., Department of Electrical Engineering, Institute of Engineering, Polytechnic of Porto, Porto, Portugal | |
dc.relation.references | Pellman, J., Zhang, J., Sheikh, F., Myocyte-fibroblast communication in cardiac fibrosis and arrhythmias: mechanisms and model systems (2016) J. Mol. Cell. Cardiol., 94, pp. 22-31 | |
dc.relation.references | Sohns, C., Marrouche, N.F., Atrial fibrillation and cardiac fibrosis (2020) Eur. Heart J., 41 (10), pp. 1123-1131 | |
dc.relation.references | Heijman, J., Linz, D., Schotten, U., Dynamics of atrial fibrillation mechanisms and comorbidities (2021) Annu. Rev. Physiol., 83, pp. 83-106 | |
dc.relation.references | Goette, A., Kalman, J.M., Aguinaga, L., Akar, J., Cabrera, J.A., Chen, S.A., Chugh, S.S., Nattel, S., EHRA/HRS/APHRS/SOLAECE expert consensus on atrial cardiomyopathies: definition, characterization, and clinical implication (2016) Europace, 18 (10), pp. 1455-1490 | |
dc.relation.references | Boyle, P.M., Yu, J., Klimas, A., Williams, J.C., Trayanova, N.A., Entcheva, E., OptoGap is an optogenetics-enabled assay for quantification of cell–cell coupling in multicellular cardiac tissue (2021) Sci. Rep., 11 (1), pp. 1-15 | |
dc.relation.references | Quinn, T.A., Camelliti, P., Rog-Zielinska, E.A., Siedlecka, U., Poggioli, T., O'Toole, E.T., Knöpfel, T., Kohl, P., Electrotonic coupling of excitable and nonexcitable cells in the heart revealed by optogenetics (2016) Proc. Natl. Acad. Sci., 113 (51), pp. 14852-14857 | |
dc.relation.references | Rook, M.B., van Ginneken, A.C., de Jonge, B., el Aoumari, A., Gros, D., Jongsma, H.J., Differences in gap junction channels between cardiac myocytes, fibroblasts, and heterologous pairs (1992) Am. J. Physiol. - Cell Physiol., 263 (5), pp. C959-C977 | |
dc.relation.references | Miragoli, M., Gaudesius, G., Rohr, S., Electrotonic modulation of cardiac impulse conduction by myofibroblasts (2006) Circ. Res., 98 (6), pp. 801-810 | |
dc.relation.references | Gaudesius, G., Miragoli, M., Thomas, S.P., Rohr, S., Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin (2003) Circ. Res., 93, pp. 421-428 | |
dc.relation.references | Tanaka, K., Zlochiver, S., Vikstrom, K.L., Yamazaki, M., Moreno, J., Klos, M., Zaitsev, A.V., Kalifa, J., Spatial distribution of fibrosis governs fibrillation wave dynamics in the posterior left atrium during heart failure (2007) Circ. Res., 101, pp. 839-847 | |
dc.relation.references | de Jong, S., van Veen, T.A.B., van Rijen, H.V.M., de Bakker, J.M.T., Fibrosis and cardiac arrhythmias (2011) J. Cardiovasc. Pharmacol., 57, pp. 630-638 | |
dc.relation.references | Amuzescu, B., Airini, R., Epureanu, F.B., Mann, S.A., Knott, T., Radu, B.M., Evolution of mathematical models of cardiomyocyte electrophysiology (2021) Math. Biosci., 334 (October 2020), p. 108567 | |
dc.relation.references | Clayton, R.H., Bernus, O., Cherry, E.M., Dierckx, H., Fenton, F.H., Mirabella, L., Panfilov, A.V., Zhang, H., Models of cardiac tissue electrophysiology: progress, challenges and open questions (2011) Prog. Biophys. Mol. Biol., 104, pp. 22-48 | |
dc.relation.references | Heijman, J., Sutanto, H., Crijns, H.J.G.M., Nattel, S., Trayanova, N.A., Computational models of atrial fibrillation: achievements, challenges, and perspectives for improving clinical care (2021) Cardiovasc. Res., 117 (7), pp. 1682-1699. , https://academic.oup.com/cardiovascres/article/117/7/1682/6247759 | |
dc.relation.references | Nezlobinsky, T., Solovyova, O., Panfilov, A.V., Anisotropic conduction in the myocardium due to fibrosis: the effect of texture on wave propagation (2020) Sci. Rep., 10 (1), pp. 1-12 | |
dc.relation.references | Falkenberg, M., Ford, A.J., Li, A.C., Lawrence, R., Ciacci, A., Peters, N.S., Christensen, K., Unified mechanism of local drivers in a percolation model of atrial fibrillation (2019) Phys. Rev. E, 100 (6), p. 62406 | |
dc.relation.references | Kudryashova, N., Nizamieva, A., Tsvelaya, V., Panfilov, A., Agladze, K., Self-organization of conducting pathways explains electrical wave propagation in cardiac tissues with high fibrosis (2019) PLoS ONE, 15 (3), p. e1006597. | |
dc.relation.references | Roney, C.H., Bayer, J.D., Cochet, H., Meo, M., Dubois, R., Jaïs, P., Vigmond, E.J., Variability in pulmonary vein electrophysiology and fibrosis determines arrhythmia susceptibility and dynamics (2018) PLoS Comput. Biol., 14 (5), pp. 1-19 | |
dc.relation.references | Godoy, E.J., Lozano, M., García-Fernández, I., Ferrer-Albero, A., MacLeod, R., Saiz, J., Sebastian, R., Atrial fibrosis hampers non-invasive localization of atrial ectopic foci from multi-electrode signals: a 3D simulation study (2018) Front. Physiol., 9 (MAY) | |
dc.relation.references | Deng, D., Murphy, M.J., Hakim, J.B., Franceschi, W.H., Zahid, S., Pashakhanloo, F., Trayanova, N.A., Boyle, P.M., Sensitivity of reentrant driver localization to electrophysiological parameter variability in image-based computational models of persistent atrial fibrillation sustained by a fibrotic substrate (2017) Chaos, 27 (9), p. 093932 | |
dc.relation.references | Gao, Y., Gong, Y., Xia, L., Simulation of atrial fibrosis using coupled myocyte-fibroblast cellular and human atrial models (2017) Comput. Math. Methods Med., 2017, pp. 1-10 | |
dc.relation.references | Morgan, R., Colman, M.A., Chubb, H., Seemann, G., Aslanidi, O.V., Slow conduction in the border zones of patchy fibrosis stabilizes the drivers for atrial fibrillation: Insights from multi-scale human atrial modeling (2016) Front. Physiol., 7 (OCT), pp. 1-15 | |
dc.relation.references | Trayanova, N.A., Boyle, P.M., Arevalo, H.J., Zahid, S., Exploring susceptibility to atrial and ventricular arrhythmias resulting from remodeling of the passive electrical properties in the heart: a simulation approach (2014) Front. Physiol., 5, p. 435 | |
dc.relation.references | Ashihara, T., Haraguchi, R., Nakazawa, K., Namba, T., Ikeda, T., Nakazawa, Y., Ozawa, T., Trayanova, N.A., The role of fibroblasts in complex fractionated electrograms during persistent/permanent atrial fibrillation: implications for electrogram-based catheter ablation (2012) Circ. Res., 110 (2), pp. 275-284 | |
dc.relation.references | Klesen, A., Jakob, D., Emig, R., Kohl, P., Ravens, U., Peyronnet, R., Cardiac fibroblasts (2018) Herzschrittmachertherapie + Elektrophysiologie, 29 (1), pp. 62-69 | |
dc.relation.references | Samko, S., Kilbas, A.A., Marichev, O., Fractional Integrals and Derivatives (1993), https://books.google.com.co/books?id=SO3FQgAACAAJ, Taylor & Francis | |
dc.relation.references | Oldham, K.B., Spanier, J., The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order (2006) Dover books on mathematics, , https://books.google.com.co/books?id=yh68AAAACAAJ, Dover Publications | |
dc.relation.references | Captur, G., Karperien, A.L., Hughes, A.D., Francis, D.P., Moon, J.C., The fractal heart-embracing mathematics in the cardiology clinic (2016) Nat. Rev. Cardiol., 14 (1), pp. 56-64 | |
dc.relation.references | Cross, S.S., Fractals in pathology (1997) J. Pathol., 182 (1), pp. 1-8 | |
dc.relation.references | Fuseler, J.W., Millette, C.F., Davis, J.M., Carver, W., Fractal and image analysis of morphological changes in the actin cytoskeleton of neonatal cardiac fibroblasts in response to mechanical stretch (2007) Microsc. Microanal., 13 (2), pp. 133-143 | |
dc.relation.references | Zouein, F.A., Kurdi, M., Booz, G.W., Fuseler, J.W., Applying fractal dimension and image analysis to quantify fibrotic collagen deposition and organization in the normal and hypertensive heart (2014) Microsc. Microanal., 20 (4), pp. 1134-1144 | |
dc.relation.references | Ugarte, J.P., Tobón, C., Lopes, A.M., Tenreiro Machado, J.A., Atrial rotor dynamics under complex fractional order diffusion (2018) Front. Physiol., 9, pp. 1-14 | |
dc.relation.references | Ugarte, J.P., Tobón, C., Lopes, A.M., Machado, J.A.T., A complex order model of atrial electrical propagation from fractal porous cell membrane (2020) Fractals, 28 (6), p. 2050106 | |
dc.relation.references | Courtemanche, M., Ramirez, R.J., Nattel, S., Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model (1998) Am. J. Physiol., 275, pp. H301-21 | |
dc.relation.references | Maleckar, M.M., Greenstein, J.L., Giles, W.R., Trayanova, N.A., Electrotonic coupling between human atrial myocytes and fibroblasts alters myocyte excitability and repolarization (2009) Biophys. J., 97, pp. 2179-2190 | |
dc.relation.references | Bosch, R.F., Zeng, X., Grammer, J.B., Popovic, K., Mewis, C., Kühlkamp, V., Ionic mechanisms of electrical remodeling in human atrial fibrillation (1999) Cardiovasc. Res., 44 (1), pp. 121-131 | |
dc.relation.references | Dobrev, D., Graf, E., Wettwer, E., Himmel, H.M., Hála, O., Doerfel, C., Christ, T., Ravens, U., Molecular basis of downregulation of g-protein–coupled inward rectifying K+ current (IK,ACh) in chronic human atrial fibrillation (2001) Circulation, 104 (21), pp. 2551-2557 | |
dc.relation.references | Van Wagoner, D.R., Pond, A.L., McCarthy, P.M., Trimmer, J.S., Nerbonne, J.M., Outward K+ current densities and kv1.5 expression are reduced in chronic human atrial fibrillation (1997) Circ. Res., 80 (6), pp. 772-781 | |
dc.relation.references | Kneller, J., Zou, R., Vigmond, E.J., Wang, Z., Leon, L.J., Nattel, S., Cholinergic atrial fibrillation in a computer model of a two-dimensional sheet of canine atrial cells with realistic ionic properties (2002) Circ. Res., 90 (9), pp. 73e-87 | |
dc.relation.references | Zheng, Y., Xia, Y., Carlson, J., Kongstad, O., Yuan, S., Atrial average conduction velocity in patients with and without paroxysmal atrial fibrillation (2017) Clin. Physiol. Funct. Imaging, 37 (6), pp. 596-601 | |
dc.relation.references | Di Biase, L., Burkhardt, J.D., Mohanty, P., Mohanty, S., Sanchez, J.E., Trivedi, C., Güneş, M., Natale, A., Left atrial appendage isolation in patients with longstanding persistent AF undergoing catheter ablation: BELIEF trial (2016) J. Am. Coll. Cardiol., 68 (18), pp. 1929-1940 | |
dc.relation.references | Mann, I., Linton, N.W.F., Coyle, C., Howard, J.P., Fudge, M., Lim, E., Qureshi, N., Kanagaratnam, P., RETRO-MAPPING: a new approach to activation mapping in persistent atrial fibrillation reveals evidence of spatiotemporal stability (2021) Circ. Arrhythmia Electrophysiol., 14 (6), pp. 578-589 | |
dc.relation.references | Machado, J.T., Fractional order generalized information (2014) Entropy, 16 (4), pp. 2350-2361 | |
dc.relation.references | Lopes, A.M., Tenreiro Machado, J.A., A review of fractional order entropies (2020) Entropy, 22 (12), pp. 1-17 | |
dc.relation.references | Valério, D., Lopes, A., Tenreiro Machado, J., Entropy analysis of a railway network's complexity (2016) Entropy, 18 (11), p. 388 | |
dc.relation.references | Borg, I., Groenen, P.J.F., Mair, P., Applied Multidimensional Scaling and Unfolding (2018) SpringerBriefs in Statistics, , Springer International Publishing | |
dc.relation.references | Ugarte, J.P., Tobón, C., Saiz, J., Lopes, A.M., Tenreiro Machado, J.A., Spontaneous activation under atrial fibrosis: a model using complex order derivatives (2021) Commun. Nonlin. Sci. Numer.Simul., 95, p. 105618 | |
dc.relation.references | Kostecki, G.M., Shi, Y., Chen, C.S., Reich, D.H., Entcheva, E., Tung, L., Optogenetic current in myofibroblasts acutely alters electrophysiology and conduction of co-cultured cardiomyocytes (2021) Sci. Rep., 11 (1), pp. 1-12 | |
dc.relation.references | Rohr, S., Schölly, D.M., Kléber, A.G., Patterned growth of neonatal rat heart cells in culture. Morphological and electrophysiological characterization (1991) Circ. Res., 68 (1), pp. 114-130 | |
dc.relation.references | Hansen, B.J., Zhao, J., Fedorov, V.V., Fibrosis and atrial fibrillation: computerized and optical mapping (2017) JACC Clin. Electrophysiol., 3 (6), pp. 531-546 | |
dc.relation.references | Roy, A., Varela, M., Aslanidi, O., Image-based computational evaluation of the effects of atrial wall thickness and fibrosis on re-entrant drivers for atrial fibrillation (2018) Front. Physiol., 9 (OCT), pp. 1-16 | |
dc.relation.references | Saha, M., Roney, C.H., Bayer, J.D., Meo, M., Cochet, H., Dubois, R., Vigmond, E.J., Wavelength and fibrosis affect phase singularity locations during atrial fibrillation (2018) Front. Physiol., 9 (SEP), pp. 1-12 | |
dc.relation.references | Sutanto, H., Cluitmans, M.J.M., Dobrev, D., Volders, P.G.A., Bébarová, M., Heijman, J., Acute effects of alcohol on cardiac electrophysiology and arrhythmogenesis: insights from multiscale in silico analyses (2020) J. Mol. Cell. Cardiol., 146 (May), pp. 69-83 | |
dc.relation.references | Nguyen, T.P., Qu, Z., Weiss, J.N., Cardiac fibrosis and arrhythmogenesis: the road to repair is paved with perils (2014) J. Mol. Cell. Cardiol., 70, pp. 83-91 | |
dc.relation.references | Palacio, L.C., Ugarte, J.P., Saiz, J., Tobón, C., The effects of fibrotic cell type and its density on atrial fibrillation dynamics: an in silico study (2021) Cells, 10 (10), p. 2769 | |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
dc.identifier.instname | instname:Universidad de Medellín | |