Mostrar el registro sencillo del ítem

dc.contributor.authorAzhmyakov V
dc.contributor.authorFernández-Gutiérrez J.P
dc.contributor.authorVerriest E.I
dc.contributor.authorPickl S.W.
dc.date.accessioned2022-09-14T14:33:26Z
dc.date.available2022-09-14T14:33:26Z
dc.date.created2021
dc.identifier.issn15475816
dc.identifier.urihttp://hdl.handle.net/11407/7366
dc.descriptionThis paper extends a newly developed computational optimization approach to a specific class of Maximal Covering Location Problems (MCLPs) with a switched dynamic structure. Most of the results obtained for the conventional MCLP address the “static” case where an optimal decision is determined on a fixed time-period. In our contribution we consider a dynamic MCLP based optimal decision making and propose an effective computational method for the numerical treatment of the switched-type Dynamic Maximal Covering Location Problem (DMCLP). A generic geometrical structure of the constraints under consideration makes it possible to separate the originally given dynamic optimization problem and reduce it to a specific family of relative simple auxiliary problems. The generalized Separation Method (SM) for the DMCLP with a switched structure finally leads to a computational solution scheme. The resulting numerical algorithm also includes the classic Lagrange relaxation. We present a rigorous formal analysis of the DMCLP optimization methodology and also discuss computational aspects. The proposed SM based algorithm is finally applied to a practically oriented example, namely, to an optimal design of a (dynamic) mobile network configuration. © 2021. All Rights Reserved.eng
dc.language.isoeng
dc.publisherAmerican Institute of Mathematical Sciences
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85101395515&doi=10.3934%2fjimo.2019128&partnerID=40&md5=0e98f57c82f7be7a93453223291b3992
dc.sourceJournal of Industrial and Management Optimization
dc.titleA SEPARATION BASED OPTIMIZATION APPROACH TO DYNAMIC MAXIMAL COVERING LOCATION PROBLEMS WITH SWITCHED STRUCTURE
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicas
dc.type.spaArtículo
dc.identifier.doi10.3934/jimo.2019128
dc.subject.keywordDynamic integer programmingeng
dc.subject.keywordDynamic MCLPeng
dc.subject.keywordOptimization of switched systemseng
dc.subject.keywordSeparation methodeng
dc.subject.keywordDecision makingeng
dc.subject.keywordLocationeng
dc.subject.keywordNumerical methodseng
dc.subject.keywordSeparationeng
dc.subject.keywordComputational optimizationeng
dc.subject.keywordComputational solutionseng
dc.subject.keywordDynamic optimization problem (DOP)eng
dc.subject.keywordGeometrical structureeng
dc.subject.keywordMaximal covering location problemseng
dc.subject.keywordNetwork configurationeng
dc.subject.keywordOptimal decision makingeng
dc.subject.keywordOptimization methodologyeng
dc.subject.keywordShape optimizationeng
dc.relation.citationvolume17
dc.relation.citationissue2
dc.relation.citationstartpage669
dc.relation.citationendpage686
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationAzhmyakov, V., Department of Mathematical Sciences, Universidad EAFIT, Medellín, Colombia
dc.affiliationFernández-Gutiérrez, J.P., Department of Basic Science, Universidad de Medellín, Medellín, Colombia
dc.affiliationVerriest, E.I., School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, United States
dc.affiliationPickl, S.W., Department of Computer Science, Universität der Bundeswehr München, München, Germany
dc.relation.referencesAtkinson, K., Han, W., Theoretical Numerical Analysis (2005) Texts in Applied Mathematics, 39. , [1] Springer, New York
dc.relation.referencesAzhmyakov, V., (2019) A Relaxation Based Approach to Optimal Control of Hybrid and Switched Systems, , [2] Elsevier, Oxford
dc.relation.referencesAzhmyakov, V., Basin, M., Reincke-Collon, C., Optimal LQ-type switched control design for a class of linear systems with piecewise constant inputs (2014) IFAC Proceedings Volumes, 47, pp. 6976-6981. , [3] in
dc.relation.referencesAzhmyakov, V., Basin, M. V., Raisch, J., A proximal point based approach to optimal control of affine switched systems (2012) Discrete Event Dyn. Syst, 22, pp. 61-81. , [4]
dc.relation.referencesAzhmyakov, V., Cabrera, J., Poznyak, A., Optimal fixed-levels control for non-linear systems with quadratic cost functionals (2016) Optimal Control Appl. Methods, 37, pp. 1035-1055. , [5]
dc.relation.referencesAzhmyakov, V., Fernández-Gutiérrez, J. P., Gadi, S. K., Pickl, St., A novel numerical approach to the MCLP based resilent supply chain optimization (2016) IFAC - PapersOnLine, 49, pp. 137-142. , [6]
dc.relation.referencesAzhmyakov, V., Schmidt, W., Approximations of relaxed optimal control problems (2006) J. Optim. Theory Appl, 130, pp. 61-77. , [7]
dc.relation.referencesBatanovic, V., Petrovic, D., Petrovic, R., Fuzzy logic based algorithms for maximum covering location problems (2009) Information Sci, 179, pp. 120-129. , [8]
dc.relation.referencesBerman, O., Kalcsics, J., Krass, D., Nickel, S., The ordered gradual covering location problem on a network (2009) Discrete Appl. Math, 157, pp. 3689-3707. , [9]
dc.relation.referencesBertsekas, D., (1995) Nonlinear Programming, Athena Scientific Optimization and Computation Series, , [10] Athena Scientific, Belmont
dc.relation.referencesBoccadoro, M., Wardi, Y., Egerstedt, M., Verriest, E. I., Optimal control of switching surfaces in hybrid dynamical systems (2005) Discrete Event Dyn. Syst, 15, pp. 433-448. , [11]
dc.relation.referencesCanbolat, M. S., von Massow, M., Planar maximal covering with ellipses (2009) Comp. Ind. Engineering, 57, pp. 201-208. , [12]
dc.relation.referencesChurch, R. L., ReVelle, C. S, The maximal covering location problem (1974) Papers of the Regional Science Association, 32, pp. 101-118. , [13]
dc.relation.referencesCoello, C. A. C., Lamont, G. B., Van Veldhuizen, D. A., Evolutionary Algorithms for Solving Multi-Objective Problems (2002) Genetic Algorithms and Evolutionary Computation, 5. , [14] Kluwer Academic, New York
dc.relation.referencesDell Olmo, P., Ricciardi, N., Sgalambro, A., A multiperiod maximal covering location model for the optimal location of intersection safety cameras on an urban traffic network (2014) Procedia - Social and Behavioral Sci, 108, pp. 106-117. , [15]
dc.relation.referencesDupont, L., Lauras, M., Yugma, C., Generalized covering location problem with multiple-coverage: Exact and heuristic method (2013) IFAC Proceedings Volumes, 46, pp. 442-447. , [16]
dc.relation.referencesFazel Zarandi, M. H., Davari, S., Haddad Sisakht, S. A., The large-scale dynamic maximal covering location problem (2013) Math. Comput. Modelling, 57, pp. 710-719. , [17]
dc.relation.referencesGalvao, R. D., Acosta Espejo, L. G., Boffey, B., A comparison of Lagrangian and surrogate relaxations for the maximal covering location problem (2000) European J. Oper. Res, 124, pp. 377-389. , [18]
dc.relation.referencesGendreau, M., Laporte, G., Semet, F., A dynamic model and parallel tabu search heuristic for real-time ambulance relocation (2001) Parallel Comput, 27, pp. 1641-1653. , [19]
dc.relation.referencesGu, J., Zhou, Y., Das, A., Moon, I., Lee, G. M., Medical relief shelter location problem with patient severity under a limited relief budget (2018) Comput. Ind. Engineering, 125, pp. 720-728. , [20]
dc.relation.referencesJahn, J., (2004) Vector Optimization, , [21] Springer, Berlin
dc.relation.referencesJi, G., Han, S., A strategy analysis in dual-channel supply chain based on effort levels (2014) Proceedings of the 1th International Conference on Service Systems and Service Management, , [22] Beijing, China
dc.relation.referencesKellerer, H., Pferschy, U., Pisinger, D., (2004) Knapsack Problem, , [23] Springer, Berlin
dc.relation.referencesMitsos, A., Chachuat, B., Barton, P. I., McCormick-based relaxation algorithm (2009) SIAM J. Optim, 20, pp. 573-601. , [24]
dc.relation.referencesMoore, G. C., ReVelle, C. S., The hierarchical service location problem (1982) Management Sci, 28, pp. 775-780. , [25]
dc.relation.referencesOzkis, A., Babalik, A., A novel metaheuristic for multi-objective optimization problems: the multi-objective vortex search algorithm (2017) Information Sci, 402, pp. 124-148. , [26]
dc.relation.referencesPolak, E., (1997) Optimization, Applied Mathematical Sciences, 124. , [27] Springer-Verlag, New York
dc.relation.referencesReVelle, C., Scholssberg, M., Williams, J., Solving the maximal covering location problem with heuristic concentration (2008) Comput. Oper. Res, 35, pp. 427-435. , [28]
dc.relation.referencesRoubicek, T., Relaxation in Optimization Theory and Variational Calculus (1997) De Gruyter Series in Nonlinear Analysis and Applications, 4. , [29] Walter de Gruyter & Co., Berlin
dc.relation.referencesShavandi, H., Mahlooji, H., A fuzzy queuing location model with a genetic algorithm for congested systems (2006) Appl. Math. Comput, 181, pp. 440-456. , [30]
dc.relation.referencesSitek, P., Wikarek, J., A hybrid approach to modeling and optimization for supply chain management with multimodal transport (2013) Proceedings of the 18th International Conference on Methods and Models in Automation and Robotics, , [31] Miedzyzdroje, Poland
dc.relation.referencesTalbi, E., Basseur, M., Nebro, A. J., Alba, E., Multi-objective optimization using meta-heuristics: Non-standard algorithms (2012) Int. Trans. Oper. Res, 19, pp. 283-305. , [32]
dc.relation.referencesVerriest, E. I., Pseudo-continuous multi-dimensional multi-mode systems (2012) Discrete Event Dyn. Syst, 22, pp. 27-59. , [33]
dc.relation.referencesVerriest, E. I., Azhmyakov, V., Advances in optimal control of differential systems with state suprema (2017) Proceedings of the 56th Conference on Decision and Control, , [34] Melbourne, Australia
dc.relation.referencesWardi, Y., Switched-mode systems: Gradient-descent algorithms with Armijo step sizes (2015) Discrete Event Dyn. Syst, 25, pp. 571-599. , [35]
dc.relation.referencesZarandi, F., Haddad Sisakht, A., Davari, S., Design of a closed-loop supply chain (CLSC) model using an interactive fuzzy goal programming (2011) Internat. J. Adv. Manufac. Tech, 56, pp. 809-821. , [36]
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem