Mostrar el registro sencillo del ítem
Adsorption capacity of the biochar obtained from Pinus patula wood micro-gasification for the treatment of polluted water containing malachite green dye
dc.contributor.author | Rubio-Clemente A | |
dc.contributor.author | Gutiérrez J | |
dc.contributor.author | Henao H | |
dc.contributor.author | Melo A.M | |
dc.contributor.author | Pérez J.F | |
dc.contributor.author | Chica E. | |
dc.date.accessioned | 2022-09-14T14:33:27Z | |
dc.date.available | 2022-09-14T14:33:27Z | |
dc.date.created | 2021 | |
dc.identifier.issn | 10183639 | |
dc.identifier.uri | http://hdl.handle.net/11407/7373 | |
dc.description | In this work, the adsorption capacity of the biochar obtained from Pinus patula biomass micro-gasification was studied using malachite green (MG) as the probe pollutant. For this purpose, the biomass type (wood pellets and chips) was selected to produce two kinds of biochar (BC). Afterwards, the effects of the adsorbent dose (6, 9 and 12 g/L), the solution pH (4, 7 and 10) and the BC particle size distribution (150–300, 300–450 and 450–600 μm) for the maximization of the MG retention by the selected BC were evaluated using a faced-centered central composite design, as response surface methodology. The results indicated that the BC derived from wood chips (BWC) exhibited a higher MG dye adsorption capacity than the BC obtained from the wood pellets (BWP) gasification under the same operating conditions after having reached the equilibrium. A second-order regression model was built for describing the MG adsorption behaviour by BWC under the considered experimental domain. The model, which was validated, resulted to be statistically significant and suitable to represent the MG adsorption by the studied BC with a p-value of 0.00 and a correlation coefficient (R2) of 95.59%. Additionally, a three-dimensional response surface graph and a contour plot were utilized to analyze the interaction effects between the factors influencing the adsorption system and to discern the optimal operating conditions for the use of BWC. The maximal MG dye retention (99.70%) was found to be at an adsorbent dose, pH solution and a particle size distribution of 9.80 g/L, 10 and from 150 to 300 μm, respectively. Therefore, the BWC tested can be utilized for the treatment of water polluted with dyes, contributing to the establishment of a circular economy. © 2021 King Saud University | eng |
dc.language.iso | eng | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85112590273&doi=10.1016%2fj.jksues.2021.07.006&partnerID=40&md5=f5df07f3b9a38e943795d7de22d85522 | |
dc.source | Journal of King Saud University - Engineering Sciences | |
dc.title | Adsorption capacity of the biochar obtained from Pinus patula wood micro-gasification for the treatment of polluted water containing malachite green dye | |
dc.type | Article | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Ingeniería Ambiental | |
dc.type.spa | Artículo | |
dc.identifier.doi | 10.1016/j.jksues.2021.07.006 | |
dc.subject.keyword | Biochar | eng |
dc.subject.keyword | Biomass micro-gasification | eng |
dc.subject.keyword | Circular economy | eng |
dc.subject.keyword | Dye adsorption | eng |
dc.subject.keyword | Response surface methodology | eng |
dc.subject.keyword | Water pollution | eng |
dc.subject.keyword | Carbonate minerals | eng |
dc.subject.keyword | Dyes | eng |
dc.subject.keyword | Gasification | eng |
dc.subject.keyword | Light transmission | eng |
dc.subject.keyword | Particle size | eng |
dc.subject.keyword | Particle size analysis | eng |
dc.subject.keyword | Pelletizing | eng |
dc.subject.keyword | Regression analysis | eng |
dc.subject.keyword | Size distribution | eng |
dc.subject.keyword | Surface properties | eng |
dc.subject.keyword | Water pollution | eng |
dc.subject.keyword | Water treatment | eng |
dc.subject.keyword | Wood products | eng |
dc.subject.keyword | Adsorption behaviour | eng |
dc.subject.keyword | Adsorption capacities | eng |
dc.subject.keyword | Central composite designs | eng |
dc.subject.keyword | Correlation coefficient | eng |
dc.subject.keyword | Optimal operating conditions | eng |
dc.subject.keyword | Response surface methodology | eng |
dc.subject.keyword | Second-order regression model | eng |
dc.subject.keyword | Three-dimensional response | eng |
dc.subject.keyword | Adsorption | eng |
dc.publisher.faculty | Facultad de Ingenierías | |
dc.affiliation | Rubio-Clemente, A., Facultad de Ingeniería, Tecnológico de Antioquia-Institución Universitaria TdeA, Calle 78b No. 72A-220, Medellín, 050034, Colombia, Grupo de Energía Alternativa (GEA), Facultad de Ingeniería, Universidad de Antioquia, Calle 70, No 52-21, Medellín, 050010, Colombia, Facultad de Ingenierías, Universidad de Medellín, Cra. 87. No. 30-65, Medellín, Colombia | |
dc.affiliation | Gutiérrez, J., Grupo de Manejo Eficiente de la Energía (GIMEL), Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70, No. 52-21, Medellín, 050010, Colombia | |
dc.affiliation | Henao, H., Grupo de Energía Alternativa (GEA), Facultad de Ingeniería, Universidad de Antioquia, Calle 70, No 52-21, Medellín, 050010, Colombia | |
dc.affiliation | Melo, A.M., Grupo de Energía Alternativa (GEA), Facultad de Ingeniería, Universidad de Antioquia, Calle 70, No 52-21, Medellín, 050010, Colombia | |
dc.affiliation | Pérez, J.F., Grupo de Manejo Eficiente de la Energía (GIMEL), Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70, No. 52-21, Medellín, 050010, Colombia | |
dc.affiliation | Chica, E., Grupo de Energía Alternativa (GEA), Facultad de Ingeniería, Universidad de Antioquia, Calle 70, No 52-21, Medellín, 050010, Colombia | |
dc.relation.references | Abukhadra, M. R., Sayed, M. A., Rabie, A. M., & Ahmed, S. A. (2019). Surface decoration of diatomite by Ni/NiO nanoparticles as hybrid composite of enhanced adsorption properties for malachite green dye and hexavalent chromium. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 577, 583-593. doi:10.1016/j.colsurfa.2019.06.018 | |
dc.relation.references | Bezerra, M. A., Ferreira, S. L. C., Novaes, C. G., dos Santos, A. M. P., Valasques, G. S., da Mata Cerqueira, U. M. F., & dos Santos Alves, J. P. (2019). Simultaneous optimization of multiple responses and its application in analytical chemistry – A review. Talanta, 194, 941-959. doi:10.1016/j.talanta.2018.10.088 | |
dc.relation.references | Choudhary, M., Kumar, R., & Neogi, S. (2020). Activated biochar derived from opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu+2 and Ni+2 from water. Journal of Hazardous Materials, 392 doi:10.1016/j.jhazmat.2020.122441 | |
dc.relation.references | Díez, H. E., & Pérez, J. F. (2019). Effects of wood biomass type and airflow rate on fuel and soil amendment properties of biochar produced in a top-lit updraft gasifier. Environmental Progress and Sustainable Energy, 38(4) doi:10.1002/ep.13105 | |
dc.relation.references | Gokulan, R., Ganesh Prabhu, G., & Jegan, J. (2019). A novel sorbent ulva lactuca-derived biochar for remediation of remazol brilliant orange 3R in packed column. Water Environment Research, 91(7), 642-649. doi:10.1002/wer.1092 | |
dc.relation.references | González, W. A., & Pérez, J. F. (2019). CFD analysis and characterization of biochar produced via fixed-bed gasification of fallen leaf pellets. Energy, 186 doi:10.1016/j.energy.2019.115904 | |
dc.relation.references | Gutiérrez, J., Rubio-Clemente, A., & Pérez, J. F. (2021). Effect of main solid biomass commodities of patula pine on biochar properties produced under gasification conditions. Industrial Crops and Products, 160 doi:10.1016/j.indcrop.2020.113123 | |
dc.relation.references | Gwenzi, W., Chaukura, N., Noubactep, C., & Mukome, F. N. D. (2017). Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision. Journal of Environmental Management, 197, 732-749. doi:10.1016/j.jenvman.2017.03.087 | |
dc.relation.references | Hamad, H. T. (2021). Removal of phenol and inorganic metals from wastewater using activated ceramic. Journal of King Saud University - Engineering Sciences, 33(4), 221-226. doi:10.1016/j.jksues.2020.04.006 | |
dc.relation.references | Han, Y., Cao, X., Ouyang, X., Sohi, S. P., & Chen, J. (2016). Adsorption kinetics of magnetic biochar derived from peanut hull on removal of cr (VI) from aqueous solution: Effects of production conditions and particle size. Chemosphere, 145, 336-341. doi:10.1016/j.chemosphere.2015.11.050 | |
dc.relation.references | Hubbard, W. G. (2015). Wood bioenergy. Bioenergy, , 55-71. Retrieved from www.scopus.com | |
dc.relation.references | Jawad, A. H., & Abdulhameed, A. S. (2020). Statistical modeling of methylene blue dye adsorption by high surface area mesoporous activated carbon from bamboo chip using KOH-assisted thermal activation. Energy, Ecology and Environment, 5(6), 456-469. doi:10.1007/s40974-020-00177-z | |
dc.relation.references | Jawad, A. H., Bardhan, M., Islam, M. A., Islam, M. A., Syed-Hassan, S. S. A., Surip, S. N., . . . Khan, M. R. (2020). Insights into the modeling, characterization and adsorption performance of mesoporous activated carbon from corn cob residue via microwave-assisted H3PO4 activation. Surfaces and Interfaces, 21 doi:10.1016/j.surfin.2020.100688 | |
dc.relation.references | Jawad, A. H., Ishak, M. A. M., Farhan, A. M., & Ismail, K. (2017). Response surface methodology approach for optimization of color removal and COD reduction of methylene blue using microwave-induced NaOH activated carbon from biomass waste. Desalination and Water Treatment, 62, 208-220. doi:10.5004/dwt.2017.20132 | |
dc.relation.references | Jindo, K., Mizumoto, H., Sawada, Y., Sanchez-Monedero, M. A., & Sonoki, T. (2014). Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences, 11(23), 6613-6621. doi:10.5194/bg-11-6613-2014 | |
dc.relation.references | Kosek, K., Luczkiewicz, A., Fudala-Ksiżek, S., Jankowska, K., Szopińska, M., Svahn, O., . . . Björklund, E. (2020). , 213-226. Retrieved from www.scopus.com | |
dc.relation.references | Kulaksiz, E., Gözmen, B., Kayan, B., & Kalderis, D. (2017). Adsorption of malachite green on fe-modified biochar: Influencing factors and process optimization. Desalination and Water Treatment, 74, 383-394. doi:10.5004/dwt.2017.20601 | |
dc.relation.references | Kurniawan, S., Yuliwati, E., Ariyanto, E., Morsin, M., Sanudin, R., & Nafisah, S. (0000). Retrieved from www.scopus.com | |
dc.relation.references | Lenis, Y. A., & Pérez, J. F. (2014). Gasification of sawdust and wood chips in a fixed bed under autothermal and stable conditions. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 36(23), 2555-2565. doi:10.1080/15567036.2013.875081 | |
dc.relation.references | Liu, G., Abukhadra, M. R., El-Sherbeeny, A. M., Mostafa, A. M., & Elmeligy, M. A. (2020). Insight into the photocatalytic properties of diatomite@Ni/NiO composite for effective photo-degradation of malachite green dye and photo-reduction of cr (VI) under visible light. Journal of Environmental Management, 254 doi:10.1016/j.jenvman.2019.109799 | |
dc.relation.references | Lou, K., Rajapaksha, A. U., Ok, Y. S., & Chang, S. X. (2016). Pyrolysis temperature and steam activation effects on sorption of phosphate on pine sawdust biochars in aqueous solutions. Chemical Speciation and Bioavailability, 28(1-4), 42-50. doi:10.1080/09542299.2016.1165080 | |
dc.relation.references | Manojkumar, N., Muthukumaran, C., & Sharmila, G. (0000). Retrieved from www.scopus.com | |
dc.relation.references | Marzbali, M. H., Mir, A. A., Pazoki, M., Pourjamshidian, R., & Tabeshnia, M. (2017). Removal of direct yellow 12 from aqueous solution by adsorption onto spirulina algae as a high-efficiency adsorbent. Journal of Environmental Chemical Engineering, 5(2), 1946-1956. doi:10.1016/j.jece.2017.03.018 | |
dc.relation.references | Medic, D., Darr, M., Potter, B., & Shah, A. (2010). Effect of torrefaction process parameters on biomass feedstock upgrading. 2010 Pittsburgh, Pennsylvania, June 20-June 23, 2010, , 1. Retrieved from www.scopus.com | |
dc.relation.references | Mohamed, A., Ghobara, M. M., Abdelmaksoud, M. K., & Mohamed, G. G. (2019). A novel and highly efficient photocatalytic degradation of malachite green dye via surface modified polyacrylonitrile nanofibers/biogenic silica composite nanofibers. Separation and Purification Technology, 210, 935-942. doi:10.1016/j.seppur.2018.09.014 | |
dc.relation.references | Montgomery, D. C. (1996). Introduction to Statistical Quality Control, Retrieved from www.scopus.com | |
dc.relation.references | Moosavi, S., Li, R. Y. M., Lai, C. W., Yusof, Y., Gan, S., Akbarzadeh, O., . . . Johan, M. R. (2020). Methylene blue dye photocatalytic degradation over synthesised fe3 o4 /ac/tio2 nano-catalyst: Degradation and reusability studies. Nanomaterials, 10(12), 1-15. doi:10.3390/nano10122360 | |
dc.relation.references | Nidheesh, P., Gopinath, A., Ranjith, N., Akre, A. P., Sreedharan, V., & Kumar, M. S. (2020). Potential role of biochar in advanced oxidation processes: A sustainable approach. Chemical Engineering Journal, 126582 Retrieved from www.scopus.com | |
dc.relation.references | Pérez, J. F., Pelaez-Samaniego, M. R., & Garcia-Perez, M. (2019). Torrefaction of fast-growing colombian wood species. Waste and Biomass Valorization, 10(6), 1655-1667. doi:10.1007/s12649-017-0164-y | |
dc.relation.references | Protásio, T. P., Bufalino, L., Tonoli, G. H. D., Guimarães Junior, M. G., Trugilho, P. F., & Mendes, L. M. (2013). Brazilian lignocellulosic wastes for bioenergy production: Characterization and comparison with fossil fuels. BioResources, 8(1), 1166-1185. doi:10.15376/biores.8.1.1166-1185 | |
dc.relation.references | Qian, K., Kumar, A., Patil, K., Bellmer, D., Wang, D., Yuan, W., & Huhnke, R. L. (2013). Effects of biomass feedstocks and gasification conditions on the physiochemical properties of char. Energies, 6(8), 3972-3986. doi:10.3390/en6083972 | |
dc.relation.references | Rajabi, M., Mirza, B., Mahanpoor, K., Mirjalili, M., Najafi, F., Moradi, O., . . . Gupta, V. K. (2016). Adsorption of malachite green from aqueous solution by carboxylate group functionalized multi-walled carbon nanotubes: Determination of equilibrium and kinetics parameters. Journal of Industrial and Engineering Chemistry, 34, 130-138. doi:10.1016/j.jiec.2015.11.001 | |
dc.relation.references | Rubio-Clemente, A., Chica, E., & Peñuela, G. A. (2021). Benzo[a]pyrene emerging micropollutant oxidation under the action of fenton reactants in real surface water: Process optimization and application. Polycyclic Aromatic Compounds, 41(1), 95-108. doi:10.1080/10406638.2019.1570950 | |
dc.relation.references | Rubio-Clemente, A., Chica, E., & Peñuela, G. A. (2020). Photolysis of a mixture of anthracene and benzo[a]pyrene at ultra-trace levels in natural water with disinfection purposes. Journal of Environmental Sciences (China), 92, 79-94. doi:10.1016/j.jes.2020.02.002 | |
dc.relation.references | Sewu, D. D., Boakye, P., Jung, H., & Woo, S. H. (2017). Synergistic dye adsorption by biochar from co-pyrolysis of spent mushroom substrate and saccharina japonica. Bioresource Technology, 244, 1142-1149. doi:10.1016/j.biortech.2017.08.103 | |
dc.relation.references | Sharma, G., Bhogal, S., Gupta, V. K., Agarwal, S., Kumar, A., Pathania, D., . . . Stadler, F. J. (2019). Algal biochar reinforced trimetallic nanocomposite as adsorptional/photocatalyst for remediation of malachite green from aqueous medium. Journal of Molecular Liquids, 275, 499-509. doi:10.1016/j.molliq.2018.11.070 | |
dc.relation.references | Silva, C. E. D. F., Gama, B. M. V. D., Gonçalves, A. H. D. S., Medeiros, J. A., & Abud, A. K. D. S. (2020). Basic-dye adsorption in albedo residue: Effect of pH, contact time, temperature, dye concentration, biomass dosage, rotation and ionic strength. Journal of King Saud University - Engineering Sciences, 32(6), 351-359. doi:10.1016/j.jksues.2019.04.006 | |
dc.relation.references | Sizmur, T., Fresno, T., Akgül, G., Frost, H., & Moreno-Jiménez, E. (2017). Biochar modification to enhance sorption of inorganics from water. Bioresource Technology, 246, 34-47. doi:10.1016/j.biortech.2017.07.082 | |
dc.relation.references | Stammati, A., Nebbia, C., De Angelis, I., Albo, A. G., Carletti, M., Rebecchi, C., . . . Dacasto, M. (2005). Effects of malachite green (MG) and its major metabolite, leucomalachite green (LMG), in two human cell lines. Toxicology in Vitro, 19(7), 853-858. doi:10.1016/j.tiv.2005.06.021 | |
dc.relation.references | Surip, S. N., Abdulhameed, A. S., Garba, Z. N., Syed-Hassan, S. S. A., Ismail, K., & Jawad, A. H. (2020). H2SO4-treated malaysian low rank coal for methylene blue dye decolourization and cod reduction: Optimization of adsorption and mechanism study. Surfaces and Interfaces, 21 doi:10.1016/j.surfin.2020.100641 | |
dc.relation.references | Tkaczyk, A., Mitrowska, K., & Posyniak, A. (2020). Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Science of the Total Environment, 717 doi:10.1016/j.scitotenv.2020.137222 | |
dc.relation.references | Tong, Y., McNamara, P. J., & Mayer, B. K. (2019). Adsorption of organic micropollutants onto biochar: A review of relevant kinetics, mechanisms and equilibrium. Environmental Science: Water Research and Technology, 5(5), 821-838. doi:10.1039/c8ew00938d | |
dc.relation.references | (1991) , pp. 3583-3597. Van Soest, P.v., Robertson, J., Lewis, B. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74 | |
dc.relation.references | Vyavahare, G. D., Gurav, R. G., Jadhav, P. P., Patil, R. R., Aware, C. B., & Jadhav, J. P. (2018). Response surface methodology optimization for sorption of malachite green dye on sugarcane bagasse biochar and evaluating the residual dye for phyto and cytogenotoxicity. Chemosphere, 194, 306-315. doi:10.1016/j.chemosphere.2017.11.180 | |
dc.relation.references | Wu, J., Yang, J., Feng, P., Huang, G., Xu, C., & Lin, B. (2020). High-efficiency removal of dyes from wastewater by fully recycling litchi peel biochar. Chemosphere, 246 doi:10.1016/j.chemosphere.2019.125734 | |
dc.relation.references | Zhang, A., Li, X., Xing, J., & Xu, G. (2020). Adsorption of potentially toxic elements in water by modified biochar: A review. Journal of Environmental Chemical Engineering, 8(4) doi:10.1016/j.jece.2020.104196 | |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
dc.identifier.instname | instname:Universidad de Medellín |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Indexados Scopus [1813]