Show simple item record

dc.contributor.authorZuluaga-Hernandez E.A
dc.contributor.authorMora-Ramos M.E
dc.contributor.authorFlórez E
dc.contributor.authorCorrea J.D.
dc.date.accessioned2022-09-14T14:33:27Z
dc.date.available2022-09-14T14:33:27Z
dc.date.created2021
dc.identifier.issn222461
dc.identifier.urihttp://hdl.handle.net/11407/7374
dc.descriptionSome nitrogen-based gases (NO, NO 2, NH 3 and N 2O) generate from the burning of fossil fuels and biomass, as well as from agricultural-related processes. They are directly related to both the deterioration of environment and human health. Research on two-dimensional materials as cores for sensing these types of harmful gases has attracted great interest; motivated by the fact that the interaction with those gases produces changes in their structural, electronic, magnetic and optical properties. In this work, investigation on the adsorption of those gases onto different blue phosphorene oxide species was carried out with the use of density functional theory, including Van der Waals interaction through KBM exchange-correlation functional. In the calculation, different positions and modes of molecule adsorption on the oxides were taken into account. The results obtained show that the interaction varies with both the nature of the molecule chemical composition and the oxide structure, resulting in different values of charge transfer, and leading to greater or lesser values of the adsorption energy of the gases. In some cases, spin polarization was observed, producing noticeable changes in the electronic structure and the optical spectrum of the nanosurfaces for each of the systems. The gases that produce the greatest change are NH 3 and NO, while those with the lowest optoelectronic responses on the different oxides are N 2O and N 2. The changes observed in the electronic structure as well as the short recovery time of gases would confirm the possibility of using these oxides for sensing applications, as it has been verified for other 2D nanomaterials. © 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.eng
dc.language.isoeng
dc.publisherSpringer
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85109966162&doi=10.1007%2fs10853-021-06300-7&partnerID=40&md5=d79447c897baf627c6678d8cb3ce6a4d
dc.sourceJournal of Materials Science
dc.titleAdsorption of nitrogen-based gases on different layers of blue phosphorene oxides
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicas
dc.type.spaArtículo
dc.identifier.doi10.1007/s10853-021-06300-7
dc.subject.keywordAgricultural robotseng
dc.subject.keywordAmmoniaeng
dc.subject.keywordCharge transfereng
dc.subject.keywordDensity functional theoryeng
dc.subject.keywordDeteriorationeng
dc.subject.keywordElectronic structureeng
dc.subject.keywordFossil fuelseng
dc.subject.keywordGas adsorptioneng
dc.subject.keywordGaseseng
dc.subject.keywordMoleculeseng
dc.subject.keywordNitrogeneng
dc.subject.keywordOptical propertieseng
dc.subject.keywordSpin fluctuationseng
dc.subject.keywordSpin polarizationeng
dc.subject.keywordVan der Waals forceseng
dc.subject.keywordAdsorption energieseng
dc.subject.keywordChemical compositionseng
dc.subject.keywordExchange-correlation functionalseng
dc.subject.keywordMagnetic and optical propertieseng
dc.subject.keywordMolecule adsorptionseng
dc.subject.keywordSensing applicationseng
dc.subject.keywordTwo-dimensional materialseng
dc.subject.keywordVan Der Waals interactionseng
dc.subject.keywordDensity of gaseseng
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationZuluaga-Hernandez, E.A., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationMora-Ramos, M.E., Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos CP 62209, Mexico
dc.affiliationFlórez, E., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationCorrea, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.relation.referencesMendoza-Villafuerte, P., Suarez-Bertoa, R., Giechaskiel, B., Riccobono, F., Bulgheroni, C., Astorga, C., Perujo, A., Nox, nh3, n2o and pn real driving emissions from a euro vi heavy-duty vehicle. impact of regulatory on-road test conditions on emissions (2017) Sci Total Environ, 609, pp. 546-555. , COI: 1:CAS:528:DC%2BC2sXht1Cjt7nI
dc.relation.referencesOlivier, J.G.J., Bouwman, A.F., Van der Hoek, K.W., Berdowski, J.J.M., Global air emission inventories for anthropogenic sources of nox, nh3 and n2o in 1990 (1998) Environ Pollut, 102 (1), pp. 135-148. , COI: 1:CAS:528:DyaK1MXjvVejsQ%3D%3D
dc.relation.referencesReis, S., Pinder, R.W., Zhang, M., Lijie, G., Sutton, M.A., Reactive nitrogen in atmospheric emission inventories (2009) Atmos Chem Phys, 9 (19), pp. 7657-7677
dc.relation.referencesAneja Viney, P., Schlesinger William, H., Li, Q., Nahas, A., Battye William, H., Characterization of the global sources of atmospheric ammonia from agricultural soils (2020) J Geophys Res Atmos, 125 (3)
dc.relation.referencesCowan, N., Carnell, E., Skiba, U., Dragosits, U., Drewer, J., Levy, P., Nitrous oxide emission factors of mineral fertilisers in the UK and Ireland: a bayesian analysis of 20 years of experimental data (2020) Environ Int, 135, p. 105366. , COI: 1:CAS:528:DC%2BC1MXisVGgsLzN
dc.relation.referencesLelieveld, J., Klingmüller, K., Pozzer, A., Pöschl, U., Fnais, M., Daiber, A., Münzel, T., Cardiovascular disease burden from ambient air pollution in europe reassessed using novel hazard ratio functions (2019) Eur Heart J, 40 (20), pp. 1590-1596. , COI: 1:CAS:528:DC%2BB3cXnt1Cquro%3D
dc.relation.referencesZhu, H., Wu, C., Wang, J., Zhang, X., The effect of simulated acid rain on the stabilization of cadmium in contaminated agricultural soils treated with stabilizing agents (2018) Environ Sci Pollut Res, 25 (18), pp. 17499-17508
dc.relation.referencesGholami, F., Tomas, M., Gholami, Z., Vakili, M., Technologies for the nitrogen oxides reduction from flue gas: a review (2020) Sci Total Environ, 714
dc.relation.referencesProtecting irrecoverable carbon in earth’s ecosystems (2020) Nat Clim Change, 10 (4), pp. 287-295. , Goldstein A, Turner Will R, Spawn Seth A, Anderson-Teixeira Kristina J, Cook-Patton S, Fargione J, Gibbs Holly K, Griscom B, Hewson Jennifer H, Howard Jennifer F
dc.relation.referencesAfzal, A., Cioffi, N., Sabbatini, L., Torsi, L., Nox sensors based on semiconducting metal oxide nanostructures: progress and perspectives (2012) Sens Actuat Chem, 171, pp. 25-42. , COI: 1:CAS:528:DC%2BC38XotVWitL4%3D
dc.relation.referencesIqbal, N., Afzal, A., Cioffi, N., Sabbatini, L., Torsi, L., Nox sensing one-and two-dimensional carbon nanostructures and nanohybrids: progress and perspectives (2013) Sens Actuat B Chem, 181, pp. 9-21. , COI: 1:CAS:528:DC%2BC3sXlt1equr8%3D
dc.relation.referencesLiu, Z., Feng, Y., Ma, C., Dan, J., Luo, J., Dai, B., A critical review of recent progress and perspective in practical denitration application (2019) Catalysts, 9 (9), p. 771. , COI: 1:CAS:528:DC%2BC1MXhvFChsLnL
dc.relation.referencesFergus Jeffrey, W., Materials for high temperature electrochemical nox gas sensors (2007) Sens Actuat B Chem, 121 (2), pp. 652-663. , COI: 1:CAS:528:DC%2BD2sXhtlalu70%3D
dc.relation.referencesLiu, H., Wan, J., Qiuyun, F., Li, M., Luo, W., Zheng, Z., Cao, H., Zhou, D., Tin oxide films for nitrogen dioxide gas detection at low temperatures (2013) Sens Actuat B Chem, 177, pp. 460-466. , COI: 1:CAS:528:DC%2BC3sXhsFKqtb0%3D
dc.relation.referencesSinghal Akshay, V., Hemant, C., Indranil, L., Noble metal decorated graphene-based gas sensors and their fabrication: a review (2017) Crit Rev Solid State Mater Sci, 42 (6), pp. 499-526. , COI: 1:CAS:528:DC%2BC2sXntlGhsg%3D%3D
dc.relation.referencesFine George, F., Cavanagh Leon, M., Afonja, A., Binions, R., Metal oxide semi-conductor gas sensors in environmental monitoring (2010) Sensors, 10 (6), pp. 5469-5502
dc.relation.referencesBinions, R., Naik, A.J.T., Metal oxide semiconductor gas sensors in environmental monitoring (2013) Semiconductor Gas Sensors, pp. 433-466. , Elsevier
dc.relation.referencesWang, C., Yin, L., Zhang, L., Xiang, D., Gao, R., Metal oxide gas sensors: sensitivity and influencing factors (2010) Sensors, 10 (3), pp. 2088-2106. , COI: 1:CAS:528:DC%2BC3cXjvVKhsr4%3D
dc.relation.referencesYu Sevastyanov, E., Maksimova, N.K., Novikov, V.A., Rudov, F.V., Sergeychenko, N.V., Chernikov, E.V., Effect of pt, pd, au additives on the surface and in the bulk of tin dioxide thin films on the electrical and gas-sensitive properties (2012) Semiconductors, 46 (6), pp. 801-809. , COI: 1:CAS:528:DC%2BC38XotVSgsLo%3D
dc.relation.referencesKay, H.A., Seung, Y.J., Ha, R.H., Young, H.L., Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanotube-polypyrrole nanocomposites (2004) Adv Mater, 16 (12), pp. 1005-1009. , COI: 1:CAS:528:DC%2BD2cXlslehsbw%3D
dc.relation.referencesKorotcenkov, G., Cho, B.K., Metal oxide composites in conductometric gas sensors: Achievements and challenges (2017) Sens Actuat B Chem, 244, pp. 182-210. , COI: 1:CAS:528:DC%2BC2sXjvFyrsw%3D%3D
dc.relation.referencesAhlers, S., Müller, G., Doll, T., Factors influencing the gas sensitivity of metal oxide materials (2006) Encyclop Sens, 3, pp. 413-447. , COI: 1:CAS:528:DC%2BD1MXkvFCnt7s%3D
dc.relation.referencesPalmisano, V., Weidner, E., Boon-Brett, L., Bonato, C., Harskamp, F., Moretto, P., Post Matthew, B., Buttner William, J., Selectivity and resistance to poisons of commercial hydrogen sensors (2015) Int J Hydrog Energy, 40 (35), pp. 11740-11747
dc.relation.referencesChoi, S.-J., Kim, I.-D., Recent developments in 2d nanomaterials for chemiresistive-type gas sensors (2018) Electron Mater Lett, 14 (3), pp. 221-260. , COI: 1:CAS:528:DC%2BC1cXktFWqtb8%3D
dc.relation.referencesDonarelli, M., Ottaviano, L., 2d materials for gas sensing applications: A review on graphene oxide, mos2, ws2 and phosphorene (2018) Sensors, 18 (11), p. 3638. , COI: 1:CAS:528:DC%2BC1MXhtFWhtbjL
dc.relation.referencesPadmanathan, K.K., Late Dattatray, J., Morgan, H., Chandra, S.R., Recent developments in 2D layered inorganic nanomaterials for sensing (2015) Nanoscale, 32 (7), pp. 13293-13312
dc.relation.referencesYang, W., Gan, L., Li, H., Zhai, T., Two-dimensional layered nanomaterials for gas-sensing applications (2016) Inorganic Chem Front, 3 (4), pp. 433-451. , COI: 1:CAS:528:DC%2BC28XmvVWntQ%3D%3D
dc.relation.referencesYang, S., Jiang, C., Wei, S., Gas sensing in 2d materials (2017) Appl Phys Rev, 4 (2), p. 021304. , COI: 1:CAS:528:DC%2BC2sXnvFGntLo%3D
dc.relation.referencesLiu, N., Zhou, S., Gas adsorption on monolayer blue phosphorus: implications for environmental stability and gas sensors (2017) Nanotechnology, 28 (17), p. 175708. , COI: 1:CAS:528:DC%2BC1cXkvVKku7o%3D
dc.relation.referencesSafari, F., Moradinasab, M., Fathipour, M., Kosina, H., Adsorption of the NH 3, NO, NO 2, CO 2, and CO gas molecules on blue phosphorene: A first-principles study (2019) Appl Surf Sci, 464, pp. 153-161
dc.relation.referencesThanh, T.T., Viet, C.N., Nguyen, V.D., Nguyen, V.H., Julker, N.M., Coghlan Campbell, J., Tran Diana, N.H., Dusan, L., The particle size effects Magnetic iron oxide nanoparticles decorated graphene for chemoresistive gas sensing (2019) J Colloid Interf Sci, 539, pp. 315-325. , COI: 1:CAS:528:DC%2BC1cXis1Sntb%2FF
dc.relation.referencesRatinac Kyle, R., Yang, W., Ringer Simon, P., Braet, F., Toward ubiquitous environmental gas sensors capitalizing on the promise of graphene (2010) Environ Sci Technol, 44 (4), pp. 1167-1176. , COI: 1:STN:280:DC%2BC3c7gtFaltw%3D%3D
dc.relation.referencesSchedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I., Novoselov, K.S., Detection of individual gas molecules adsorbed on graphene (2007) Nat Mater, 6 (9), p. 652. , COI: 1:CAS:528:DC%2BD2sXpvFKjsrs%3D
dc.relation.referencesYuan, W., Shi, G., Graphene-based gas sensors (2013) J Mater Chem A, 1 (35), pp. 10078-10091. , COI: 1:CAS:528:DC%2BC3sXht1OqsLbO
dc.relation.referencesZhang, Y.-H., Chen, Y.-B., Zhou, K.-G., Liu, C.-H., Zeng, J., Zhang, H.-L., Peng, Y., Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study (2009) Nanotechnology, 20 (18), p. 185504. , COI: 1:CAS:528:DC%2BD1MXovF2isrc%3D
dc.relation.referencesJoshi, N., Hayasaka, T., Liu, Y., Liu, H., Oliveira Osvaldo, N., Lin, L., A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2d transition metal dichalcogenides (2018) Microchimica Acta, 185 (4), p. 213. , COI: 1:CAS:528:DC%2BC1cXktlSktbc%3D
dc.relation.referencesSarkar, D., Xie, X., Kang, J., Zhang, H., Liu, W., Navarrete, J., Moskovits, M., Banerjee, K., Functionalization of transition metal dichalcogenides with metallic nanoparticles: implications for doping and gas-sensing (2015) Nano Lett, 15 (5), pp. 2852-2862. , COI: 1:CAS:528:DC%2BC2MXjsFChtr4%3D
dc.relation.referencesMeshginqalam, B., Barvestani, J., Highly sensitive toxic gas molecule sensor based on defect-induced silicene (2019) J Mater Sci Mater Electron, 30 (20), pp. 18637-18646. , COI: 1:CAS:528:DC%2BC1MXhvVWkurnO
dc.relation.referencesBalendhran, S., Walia, S., Nili, H., Sriram, S., Bhaskaran, M., Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene (2015) Small, 11 (6), pp. 640-652
dc.relation.referencesJijun, Z., Hongsheng, L., Zhiming, Y., Ruge, Q., Si, Z., Yangyang, W., Liu, C.C., Jing, L., Rise of silicene: a competitive 2d material (2016) Prog Mater Sci, 83, pp. 24-151. , COI: 1:CAS:528:DC%2BC28XntlyjsLg%3D
dc.relation.referencesIrshad, R., Tahir, K., Li, B., Sher, Z., Ali, J., Nazir, S., A revival of 2d materials, phosphorene: its application as sensors (2018) J Indus Eng Chem, 64, pp. 60-69
dc.relation.referencesZhang, Q., Zhang, J., Wan, S., Wang, W., Lei, F., Stimuli-responsive 2d materials beyond graphene (2018) Adv Funct Mater, 28 (45), p. 1802500. , COI: 1:CAS:528:DC%2BC1cXhsFahs7rL
dc.relation.referencesMorgan, H., Rout Chandra, S., Late Dattatray, J., Future prospects of 2d materials for sensing applications (2019) Fund Sensing Appl 2D Mater, pp. 481-482
dc.relation.referencesLee, E., Young, S.Y., Kim, D.-J., Two-dimensional transition metal dichalcogenides and metal oxide hybrids for gas sensing (2018) ACS Sens, 3 (10), pp. 2045-2060. , COI: 1:CAS:528:DC%2BC1cXhvVWiu7vO
dc.relation.referencesRajkumar, K., Rajendra Kumar, R.T., Gas sensors based on two-dimensional materials and its mechanisms (2019) Fundamentals and Sensing Applications of 2D Materials, pp. 205-258. , Elsevier
dc.relation.referencesBüyükköse, S., Highly selective and sensitive wo3 nanoflakes based ammonia sensor (2020) Mater Sci Semicond Process, 110, p. 104969. , COI: 1:CAS:528:DC%2BB3cXitVygu7o%3D
dc.relation.referencesWei, H., Xia, N., Xiaojun, W., Li, Z., Yang, J., Silicene as a highly sensitive molecule sensor for nh 3, no and no 2 (2014) Phys Chem Chem Phys, 16 (15), pp. 6957-6962. , COI: 1:CAS:528:DC%2BC2cXksFyjurc%3D
dc.relation.referencesYong, Y., Xiangying, S., Zhou, Q., Kuang, Y., Li, X., The zn 12 o 12 cluster-assembled nanowires as a highly sensitive and selective gas sensor for no and no 2 (2017) Sci Rep, 7 (1), p. 17505. , COI: 1:CAS:528:DC%2BC1cXhsFGitL7F
dc.relation.referencesChakraborty, B., Electronic structure and theoretical aspects on sensing application of 2d materials (2019) Fundamentals and Sensing Applications of 2D Materials, pp. 145-203. , Elsevier
dc.relation.referencesPrasongkit, J., Shukla, V., Grigoriev, A., Ahuja, R., Amornkitbamrung, V., Ultrahigh-sensitive gas sensors based on doped phosphorene: a first-principles investigation (2019) Appl Surf Sci, 497, p. 143660. , COI: 1:CAS:528:DC%2BC1MXhvVertr%2FO
dc.relation.referencesTan, T., Jiang, X., Wang, C., Yao, B., Zhang, H., 2d material optoelectronics for information functional device applications: status and challenges (2020) Adv Sci, 7 (11)
dc.relation.referencesChen, X., Meng, R., Jiang, J., Liang, Q., Yang, Q., Tan, C., Sun, X., Ren, T., Electronic structure and optical properties of graphene/stanene heterobilayer (2016) Phys Chem Chem Phys, 18 (24), pp. 16302-16309. , COI: 1:CAS:528:DC%2BC28Xot12jtrk%3D
dc.relation.referencesKong, L.-J., Liu, G.-H., Zhang, Y.-J., Tuning the electronic and optical properties of phosphorene by transition-metal and nonmetallic atom co-doping (2016) RSC Adv, 6 (13), pp. 10919-10929. , COI: 1:CAS:528:DC%2BC28XmvVWnsQ%3D%3D
dc.relation.referencesSafari, F., Moradinasab, M., Fathipour, M., Schwalke, U., The transport and optical sensing properties of blue phosphorene: A first-principles study (2019) 2019 14Th International Conference on Design Technology of Integrated Systems in Nanoscale Era (DTIS). IEEE, pp. 1-4
dc.relation.referencesShaoliang, Y., Xiaoqin, W., Wang, Y., Guo, X., Tong, L., 2d materials for optical modulation: challenges and opportunities (2017) Adv Mater, 29 (14), p. 1606128. , COI: 1:CAS:528:DC%2BC2sXjtVersLg%3D
dc.relation.referencesGibertini, M., Koperski, M., Morpurgo, A.F., Novoselov, K.S., Magnetic 2d materials and heterostructures (2019) Nat Nanotechnol, 14 (5), pp. 408-419. , COI: 1:CAS:528:DC%2BC1MXptVCktb0%3D
dc.relation.referencesDing, Y., Wang, Y., Structural, electronic, and magnetic properties of adatom adsorptions on black and blue phosphorene: a first-principles study (2015) J Phys Chem C, 119 (19), pp. 10610-10622. , COI: 1:CAS:528:DC%2BC2MXntlCmurg%3D
dc.relation.referencesLiu, X., Ma, T., Pinna, N., Zhang, J., Two-dimensional nanostructured materials for gas sensing (2017) Adv Funct Mater, 27 (37), p. 1702168. , COI: 1:CAS:528:DC%2BC2sXht1Kqtb7P
dc.relation.referencesRicciardella, F., Lee, K., Stelz, T., Hartwig, O., Prechtl, M., McCrystall, M., McEvoy, N., Duesberg Georg, S., Calibration of nonstationary gas sensors based on two-dimensional materials (2020) ACS Omega, 5 (11), pp. 5959-5963
dc.relation.referencesJha Ravindra, K., Sakhuja, N., Bhat, N., 2d nano materials for cmos compatible gas sensors (2019) In: 2019 34Th Symposium on Microelectronics Technology and Devices (Sbmicro), pp. 1-3. , IEEE
dc.relation.referencesAnichini, C., Czepa, W., Pakulski, D., Aliprandi, A., Ciesielski, A., Samorì, P., Chemical sensing with 2d materials (2018) Chem Soc Rev, 47 (13), pp. 4860-4908. , COI: 1:CAS:528:DC%2BC1cXhtF2jurnO
dc.relation.referencesCai, Y., Ke, Q., Zhang, G., Zhang, Y.-W., Energetics, charge transfer, and magnetism of small molecules physisorbed on phosphorene (2015) J Phys Chem C, 119 (6), pp. 3102-3110. , COI: 1:CAS:528:DC%2BC2MXhtFyktbk%3D
dc.relation.referencesKou, L., Frauenheim, T., Chen, C., Phosphorene as a superior gas sensor: selective adsorption and distinct I–V response (2014) J Phys Chem Lett, 5 (15), pp. 2675-2681. , COI: 1:CAS:528:DC%2BC2cXhtFyqsLrN
dc.relation.referencesZeng, B., Long, M., Dong, Y., Xiao, J., Zhang, S., Yi, Y., Gao, Y., Stress-sign-tunable poisson’s ratio in monolayer blue phosphorus oxide (2019) J Phys Condens Matter, 31 (29)
dc.relation.referencesBai, R., Chen, Z., Gou, M., Zhang, Y., A first-principles study of group iv and vi atoms doped blue phosphorene (2018) Solid State Commun, 270, pp. 76-81. , COI: 1:CAS:528:DC%2BC2sXhvFagsLfL
dc.relation.referencesJia, L.Z., Zhao, S., Telychko, M., Shuo Sun, X., Jie, S., Anton, L.T., Qi, D., Zheng, Y., Reversible oxidation of blue phosphorus monolayer on au (111) (2019) Nano Lett, 19 (8), pp. 5340-5346. , COI: 1:CAS:528:DC%2BC1MXhtlWjt7jP
dc.relation.referencesZuluaga-Hernandez, E.A., Florez, E., Dorkis, L., Mora-Ramos, M.E., Correa, J.D., Small molecule gas adsorption onto blue phosphorene oxide layers (2020) Appl Surf Sci, 530
dc.relation.referencesSoler José, M., Artacho, E., Gale Julian, D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The siesta method for ab initio order-n materials simulation (2002) J Phys Condens Mat, 14 (11), p. 2745
dc.relation.referencesJiří, K., David Bowler, R., Angelos, M., Chemical accuracy for the van der waals density functional (2009) J Phys Condens Matter, 22 (2), p. 022201
dc.relation.referencesDion, M., Rydberg, H., Schröder, E., Langreth, D.C., Lundqvist, B.I., Van der Waals density functional for general geometries (2004) Phys Rev Lett, 92
dc.relation.referencesOspina, D.A., Duque, C.A., Correa, J.D., Eric, S.M., Twisted bilayer blue phosphorene: a direct band gap semiconduct (2016) Superlatt Microstruc, 97, pp. 562-568. , COI: 1:CAS:528:DC%2BC28Xht1Ors7jO
dc.relation.referencesOspina, D.A., Duque, C.A., Mora-Ramos, M.E., Correa, J.D., Effects of external electric field on the optical and electronic properties of blue phosphorene nanoribbons: a dft study (2017) Comput Mater Sci, 135, pp. 43-53. , COI: 1:CAS:528:DC%2BC2sXlvVKhu78%3D
dc.relation.referencesJiří, K., Bowler David, R., Angelos, M., Van der waals density functionals applied to solids (2011) Phys Rev B, 83 (19), p. 195131. , COI: 1:CAS:528:DC%2BC3MXotVOlsbY%3D
dc.relation.referencesCarrasco, J., Santra, B., Klimeš, J., Michaelides, A., To wet or not to wet? dispersion forces tip the balance for water ice on metals (2011) Phys Rev Lett, 106 (2), p. 026101. , COI: 1:CAS:528:DC%2BC3MXhs1Cru7Y%3D
dc.relation.referencesJia, X., An, W., Adsorption of monocyclic aromatics on transition metal surfaces: insight into variation of binding strength from first-principles (2018) J Phys Chem C, 122 (38), pp. 21897-21909. , COI: 1:CAS:528:DC%2BC1cXhs1Cht73F
dc.relation.referencesBader, R.F.W., (1994) Atoms in Molecules: A Quantum Theory, , Oxford University Press
dc.relation.referencesSanville, E., Kenny, S.D., Smith, R., Henkelman, G., Improved grid-based algorithm for bader charge allocation (2007) J Comput Chem, 28 (5), pp. 899-908. , COI: 1:CAS:528:DC%2BD2sXjtFCit78%3D
dc.relation.referencesHenkelman, G., Arnaldsson, A., Jónsson, H., A fast and robust algorithm for bader decomposition of charge density (2006) Comput Mater Sci, 36 (3), pp. 354-360
dc.relation.referencesZuluaga-Hernández Edison, A., Flórez, E., Dorkis, L., Mora-Ramos Miguel, E., Correa Julian, D., Opto-electronic properties of blue phosphorene oxide with and without oxygen vacancies (2020) Int J Quant Chem, 120 (2)
dc.relation.referencesPremasiri, K., Gao Xuan, P.A., Tuning spin-orbit coupling in 2d materials for spintronics: a topical review (2019) J Phys Condens Matter, 31 (19), p. 193001. , COI: 1:CAS:528:DC%2BC1MXhtVWisL7K
dc.relation.referencesGarg, P., Choudhuri, I., Pathak, B., Stanene based gas sensors: effect of spin-orbit coupling (2017) Phys Chem Chem Phys, 19 (46), pp. 31325-31334. , COI: 1:CAS:528:DC%2BC2sXhslKnurvP
dc.relation.referencesLe, M.-Q., Reactive molecular dynamics simulations of the mechanical properties of various phosphorene allotropes (2018) Nanotechnology, 29 (19), p. 195701. , COI: 1:CAS:528:DC%2BC1cXit1egsb%2FL
dc.relation.referencesGray, P., Yoffe, A.D., The reactivity and structure of nitrogen dioxide (1955) Chem Rev, 55 (6), pp. 1069-1154. , COI: 1:CAS:528:DyaG28XjtFequg%3D%3D
dc.relation.referencesWells Alexander, F., Química inorgánica estructural (1978) Reverte
dc.relation.referencesShang, Z., Abdalla, M., Kuhnert, M., Albanito, F., Zhou, F., Xia, L., Smith, P., Measurement of n2o emissions over the whole year is necessary for estimating reliable emission factors (2020) Environ Pollut, 259, p. 113864. , COI: 1:CAS:528:DC%2BB3cXis1Sntw%3D%3D
dc.relation.referencesTang, S., Cao, Z., Adsorption and dissociation of ammonia on graphene oxides: a first-principles study (2012) J Phys Chem C, 116 (15), pp. 8778-8791. , COI: 1:CAS:528:DC%2BC38Xks1ChtLs%3D
dc.relation.referencesMattson Eric, C., Pande, K., Unger, M., Cui Shumao, L., Ganhua Gajdardziska-Josifovska, M., Weinert, M., Chen, J., Hirschmugl Carol, J., Exploring adsorption and reactivity of nh3 on reduced graphene oxide (2013) J Phys Chem C, 117 (20), pp. 10698-10707. , COI: 1:CAS:528:DC%2BC3sXms1yhs70%3D
dc.relation.referencesZhu, S., Sun, H., Liu, X., Zhuang, J., Zhao, L., Room-temperature nh 3 sensing of graphene oxide film and its enhanced response on the laser-textured silicon (2017) Sci Rep, 7 (1), pp. 1-8. , COI: 1:CAS:528:DC%2BC1cXhs1CltLvP
dc.relation.referencesKhurshid, F., Jeyavelan, M., Hussain, T., Sterlin Leo Hudson, M., Nagarajan, S., Ammonia gas adsorption study on graphene oxide based sensing device under different humidity conditions (2020) Mater Chem Phys, 242, p. 122485. , COI: 1:CAS:528:DC%2BC1MXitlajsLzL
dc.relation.referencesSangiovanni, D.G., Edström, D., Hultman, L., Petrov, I., Greene Joseph, E., Chirita, V., Ab initio and classical molecular dynamics simulations of n2 desorption from tin (001) surfaces (2014) Surf Sci, 624, pp. 25-31. , COI: 1:CAS:528:DC%2BC2cXltFaiur8%3D
dc.relation.referencesMorino, I., Yamada, K.M.T., Maki, A.G., Terahertz measurements of rotational transitions in vibrationally excited states of n2o (1999) J Mole Spectros, 196 (1), pp. 131-138. , COI: 1:CAS:528:DyaK1MXjsFKntrw%3D
dc.relation.referencesXiao-Hong, L., Shan-Shan, L., Yong-Liang, Y., Rui-Zhou, Z., Adsorption of nh3 onto vacancy-defected ti2co2 monolayer by first-principles calculations (2020) Appl Surf Sci, 504, p. 144325. , COI: 1:CAS:528:DC%2BC1MXitFantbvN
dc.relation.referencesYong, Y., Zhou, Q., Su, X., Kuang, Y., Richard, C., Catlow, A., Li, X., Hydrogenated si12au20 cluster as a molecular sensor with high performance for nh3 and no detection: a first-principle study (2019) J Mole Liquids, 289, p. 111153. , COI: 1:CAS:528:DC%2BC1MXhtFyitLvO
dc.relation.referencesSadegh, M.A., Monshi, M.M., Torres, I., Zeidi, S.M.J., Calizo, I., Dft study of adsorption behavior of no, co, no2, and nh3 molecules on graphene-like bc3: a search for highly sensitive molecular sensor (2018) Appl Surf Sci, 427, pp. 326-333. , COI: 1:CAS:528:DC%2BC2sXhtlarurnO
dc.relation.referencesPeng, S., Cho, K., Qi, P., Dai, H., Ab initio study of cnt no2 gas sensor (2004) Chem Phys Lett, 387 (4-6), pp. 271-276. , COI: 1:CAS:528:DC%2BD2cXitl2mtLk%3D
dc.relation.referencesGhambarian, M., Azizi, Z., Ghashghaee, M., Phosphorene defect for high-quality detection of nitric oxide and carbon monoxide: a periodic density functional study (2020) Chem Eng J, 396
dc.relation.referencesLiu, X., Cui, J., Sun, J., Zhang, X., 3d graphene aerogel-supported sno 2 nanoparticles for efficient detection of no 2 (2014) RSC Adv, 4 (43), pp. 22601-22605. , COI: 1:CAS:528:DC%2BC2cXptVejsro%3D
dc.relation.referencesKaewmaraya, T., Ngamwongwan, L., Moontragoon, P., Jarernboon, W., Singh, D., Ahuja, R., Karto, A., Hussain, T., Novel green phosphorene as a superior chemical gas sensing material (2021) J Haz Mater, 401
dc.relation.referencesGonzalez Juan, D., Shojaee, K., Haynes Brian, S., Montoya, A., The effect of surface coverage on n 2, no and n 2 o formation over pt (111) (2018) Phys Chem Chem Phys, 20 (39), pp. 25314-25323
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record