Mostrar el registro sencillo del ítem

dc.contributor.authorSerna-Carrizales J.C
dc.contributor.authorCollins-Martínez V.H
dc.contributor.authorFlórez E
dc.contributor.authorGomez-Duran C.F.A
dc.contributor.authorPalestino G
dc.contributor.authorOcampo-Pérez R.
dc.date.accessioned2022-09-14T14:33:27Z
dc.date.available2022-09-14T14:33:27Z
dc.date.created2021
dc.identifier.issn1677322
dc.identifier.urihttp://hdl.handle.net/11407/7375
dc.descriptionIn this work the single and ternary removal of sulfonamides (sulfamethoxazole, sulfadiazine and sulfametazine) from water was investigated using granular activated carbon. The single adsorption mechanism was elucidated by obtaining the adsorption isotherms supported by computational calculations. The ternary adsorption was analyzed by using an experimental Box-Behnken type response surface design. The results showed that the total adsorption capacity of activated carbon duplicates in ternary systems compared to single systems. Besides, in both cases the activated carbon showed a greater affinity for removing sulfamethoxazole followed by sulfadiazine and sulfametazine, correspondingly. It was shown that hydrogen bonding interactions presented the highest adsorption energies followed by π-π interactions. From the design of experiments three statistically reliable mathematical models were proposed to estimate the adsorption capacity for each sulfonamide as a function of the solution pH, temperature and initial concentration. Finally, it was shown that sulfonamide ternary adsorption is an endothermic process and that the adsorption rate decreases as a result of partial blockage of the pores due to simultaneous adsorption. © 2020 Elsevier B.V.eng
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85098184919&doi=10.1016%2fj.molliq.2020.114740&partnerID=40&md5=bdf567392d7850b1cf7cc82286290e95
dc.sourceJournal of Molecular Liquids
dc.titleAdsorption of sulfamethoxazole, sulfadiazine and sulfametazine in single and ternary systems on activated carbon. Experimental and DFT computations.
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicas
dc.type.spaArtículo
dc.identifier.doi10.1016/j.molliq.2020.114740
dc.subject.keywordDFT computationseng
dc.subject.keywordResponse surface experiment designeng
dc.subject.keywordSingle and ternary adsorptioneng
dc.subject.keywordSulfonamideseng
dc.subject.keywordActivated carboneng
dc.subject.keywordAmideseng
dc.subject.keywordDesign for testabilityeng
dc.subject.keywordDesign of experimentseng
dc.subject.keywordFunctionseng
dc.subject.keywordHydrogen bondseng
dc.subject.keywordSulfur compoundseng
dc.subject.keywordTernary systemseng
dc.subject.keywordAdsorption capacitieseng
dc.subject.keywordAdsorption mechanismeng
dc.subject.keywordComputational calculationseng
dc.subject.keywordEndothermic processeng
dc.subject.keywordGranular activated carbonseng
dc.subject.keywordHydrogen bonding interactionseng
dc.subject.keywordInitial concentrationeng
dc.subject.keywordResponse surface designseng
dc.subject.keywordAdsorptioneng
dc.relation.citationvolume324
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationSerna-Carrizales, J.C., Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico
dc.affiliationCollins-Martínez, V.H., Ingeniería y Química de Materiales, Centro de Investigación en Materiales Avanzados, S.C., Miguel de Cervantes #120, Complejo Industrial Chihuahua, Chih, C.P. 31136, Mexico
dc.affiliationFlórez, E., Grupo de materiales con impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Colombia
dc.affiliationGomez-Duran, C.F.A., Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico
dc.affiliationPalestino, G., Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico
dc.affiliationOcampo-Pérez, R., Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico
dc.relation.referencesWang, T., Zhou, Y., Cao, S., Lu, J., Zhou, Y., Degradation of sulfanilamide by Fenton-like reaction and optimization using response surface methodology (2019) Ecotoxicol. Environ. Saf., 172, pp. 334-340
dc.relation.referencesWei, X., Zhang, Z., Qin, L., Dai, J., Template-free preparation of yeast-derived three-dimensional hierarchical porous carbon for highly efficient sulfamethazine adsorption from water (2018) J. Taiwan Inst. Chem. Eng., 95, pp. 532-540
dc.relation.referencesBai, Y., Ruan, X., Wang, F., Antoine, G., van der Hoek, J.P., Sulfonamides removal under different redox conditions and microbial response to sulfonamides stress during riverbank filtration: a laboratory column study (2019) Chemosphere, 220, pp. 668-677
dc.relation.referencesHu, S., Zhang, Y., Shen, G., Zhang, H., Yuan, Z., Zhang, W., Adsorption/desorption behavior and mechanisms of sulfadiazine and sulfamethoxazole in agricultural soil systems (2019) Soil Tillage Res., 186, pp. 233-241
dc.relation.referencesYu, L., Song, C., Zhang, C., Fan, L., Qiu, L., Wu, W., Meng, S., Chen, J., Occurrence of sulfonamides in fish in the lower reaches of Yangtze River, China and estimated daily intake for understanding human dietary exposure (2018) Aquaculture, 495, pp. 538-544
dc.relation.referencesDias, J.M., Alvim-Ferraz, M.C.M., Almeida, M.F., Rivera-Utrilla, J., Sánchez-Polo, M., Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review (2007) J. Environ. Manag., 85, pp. 833-846
dc.relation.referencesLiu, Y., Peng, Y., An, B., Li, L., Liu, Y., Effect of molecular structure on the adsorption affinity of sulfonamides onto CNTs: batch experiments and DFT calculations (2020) Chemosphere, 246, p. 125778
dc.relation.referencesGao, Y., Kang, R., Xia, J., Yu, G., Deng, S., Understanding the adsorption of sulfonamide antibiotics on MIL-53s: metal dependence of breathing effect and adsorptive performance in aqueous solution (2019) J. Colloid Interface Sci., 535, pp. 159-168
dc.relation.referencesLiu, F., Zhao, J., Wang, S., Xing, B., Adsorption of sulfonamides on reduced graphene oxides as affected by pH and dissolved organic matter (2016) Environ. Pollut., 210, pp. 85-93
dc.relation.referencesZuo, L., Ai, J., Fu, H., Chen, W., Zheng, S., Xu, Z., Zhu, D., Enhanced removal of sulfonamide antibiotics by KOH-activated anthracite coal: batch and fixed-bed studies (2016) Environ. Pollut., 211, pp. 425-434
dc.relation.referencesYang, W., Zheng, F., Xue, X., Lu, Y., Investigation into adsorption mechanisms of sulfonamides onto porous adsorbents (2011) J. Colloid Interface Sci., 362, pp. 503-509
dc.relation.referencesZhao, H., Liu, X., Cao, Z., Zhan, Y., Shi, X., Yang, Y., Zhou, J., Xu, J., Adsorption behavior and mechanism of chloramphenicols, sulfonamides, and non-antibiotic pharmaceuticals on multi-walled carbon nanotubes (2016) J. Hazard. Mater., 310, pp. 235-245
dc.relation.referencesAbdoli, M., Saeidian, H., Kakanejadifard, A., The interaction of propargylamine-based sulfonamide with pristine, Al and Si doped boron nitride nanotubes: a theoretical study (2017) Comput. Theor. Chem., 1115, pp. 323-329
dc.relation.referencesLiu, Y., Liu, X., Zhang, G., Ma, T., Du, T., Yang, Y., Lu, S., Wang, W., Adsorptive removal of sulfamethazine and sulfamethoxazole from aqueous solution by hexadecyl trimethyl ammonium bromide modified activated carbon (2019) Colloids Surf. A Physicochem. Eng. Asp., 564, pp. 131-141
dc.relation.referencesConde-Cid, M., Ferreira-Coelho, G., Fernández-Calviño, D., Núñez-Delgado, A., Fernández-Sanjurjo, M.J., Arias-Estévez, M., Álvarez-Rodríguez, E., Single and simultaneous adsorption of three sulfonamides in agricultural soils: effects of pH and organic matter content (2020) Sci. Total Environ., 744, p. 140872
dc.relation.referencesStoeckli, F., López-Ramón, M.V., Hugi-Cleary, D., Guillot, A., Micropore sizes in activated carbons determined from the Dubinin–Radushkevich equation (2001) Carbon, 39, pp. 1115-1116
dc.relation.referencesBoehm, H.P., Chemical identification of surface groups (1966) Adv. Catal., 16, pp. 179-274
dc.relation.referencesFerreira, S.L.C., Bruns, R.E., Ferreira, H.S., Matos, G.D., David, J.M., Brandão, G.C., da Silva, E.G.P., dos Santos, W.N.L., Box-Behnken design: an alternative for the optimization of analytical methods (2007) Anal. Chim. Acta, 597, pp. 179-186
dc.relation.referencesOcampo-Perez, R., Leyva-Ramos, R., Alonso-Davila, P., Rivera-Utrilla, J., Sanchez-Polo, M., Modeling adsorption rate of pyridine onto granular activated carbon (2010) Chem. Eng. J., 165, pp. 133-141
dc.relation.referencesKopac, T., Bozgeyik, K., Flahaut, E., Adsorption and interactions of the bovine serum albumin-double walled carbon nanotube system (2018) J. Mol. Liq., 252, pp. 1-8
dc.relation.referencesYener, J., Kopac, T., Dogu, G., Dogu, T., Batch adsorber rate analysis of methylene blue on amberlite and clinoptilolite (2006) Sep. Sci. Technol., 41, pp. 1857-1879
dc.relation.referencesYener, J., Kopac, T., Dogu, G., Dogu, T., Dynamic analysis of sorption of methylene blue dye on granular and powdered activated carbon (2008) Chem. Eng. J., 144, pp. 400-406
dc.relation.referencesOcampo-Pérez, R., Orellana-Garcia, F., Sánchez-Polo, M., Rivera-Utrilla, J., Velo-Gala, I., López-Ramón, M.V., Alvarez-Merino, M.A., Nitroimidazoles adsorption on activated carbon cloth from aqueous solution (2013) J. Colloid Interface Sci., 401, pp. 116-124
dc.relation.referencesKeith, T.A., Frisch, M.J., Inclusion of explicit solvent molecules in a self-consistent-reaction field model of solvation (1994) Modeling the Hydrogen Bond, pp. 22-35. , American Chemical Society
dc.relation.referencesChen, Q., Zheng, J., Xu, J., Dang, Z., Zhang, L., Insights into sulfamethazine adsorption interfacial interaction mechanism on mesoporous cellulose biochar: coupling DFT/FOT simulations with experiments (2019) Chem. Eng. J., 356, pp. 341-349
dc.relation.referencesJin, Z., Wang, X., Sun, Y., Ai, Y., Wang, X., Adsorption of 4- n -nonylphenol and bisphenol-a on magnetic reduced graphene oxides: a combined experimental and theoretical studies (2015) Environ. Sci. Technol., 49, pp. 9168-9175
dc.relation.referencesMontes-Morán, M.A., Suárez, D., Menéndez, J.A., Fuente, E., On the nature of basic sites on carbon surfaces: an overview (2004) Carbon, 42, pp. 1219-1225
dc.relation.referencesKupgan, G., Liyana-Arachchi, T.P., Colina, C.M., NLDFT pore size distribution in amorphous microporous materials (2017) Langmuir, 33, pp. 11138-11145
dc.relation.referencesGiles, C.H., Smith, D., Huitson, A., A general treatment and classification of the solute adsorption isotherm. I. Theoretical (1974) J. Colloid Interface Sci., 47, pp. 755-765
dc.relation.referencesMoral Rodríguez, A.I., Leyva-Ramos, R., Ocampo-Pérez, R., Mendoza-Barron, J., Serratos-Álvarez, I.N., Salazar-Rabago, J.J., Removal of Ronidazole and Sulfamethoxazole From Water Solutions by Adsorption on Granular Activated Carbon: Equilibrium and Intraparticle Diffusion Mechanisms (2016), 2016. , Springer Science+Business Media New York (89-89-103)
dc.relation.referencesWang, Y., Jiao, W., Wang, J., Liu, G., Cao, H., Lü, J., Amino-functionalized biomass-derived porous carbons with enhanced aqueous adsorption affinity and sensitivity of sulfonamide antibiotics (2019) Bioresour. Technol., 277, pp. 128-135
dc.relation.referencesNinwiwek, N., Hongsawat, P., Punyapalakul, P., Prarat, P., Removal of the antibiotic sulfamethoxazole from environmental water by mesoporous silica-magnetic graphene oxide nanocomposite technology: adsorption characteristics, coadsorption and uptake mechanism (2019) Colloids Surf. A Physicochem. Eng. Asp., 580, p. 123716
dc.relation.referencesChen, Q., Wang, X., Yi, P., Zhang, P., Zhang, L., Wu, M., Pan, B., Key roles of electron cloud density and configuration in the adsorption of sulfonamide antibiotics on carbonaceous materials: molecular dynamics and quantum chemical investigations (2021) Appl. Surf. Sci., 536, p. 147757
dc.relation.referencesZuo, L., Ai, J., Fu, H., Chen, W., Zheng, S., Xu, Z., Zhu, D., Enhanced removal of sulfonamide antibiotics by KOH-activated anthracite coal: batch and fixed-bed studies (2016) Environ. Pollut., 211, pp. 425-434
dc.relation.referencesAmigó, J., Buhigas, G., Ortega, E., Caracterización de la Degradación de Sulfametazina Mediante Foto-Fenton (POA's) (2018), 1, pp. 1-25
dc.relation.referencesGonzález, I.A., Rodríguez, M.V., Síntesis de Sulfadiazina y Combinación con Cobre para Potenciar Efecto Antimicrobiano (2018), 1, pp. 1-33
dc.relation.referencesSun, P., Li, Y., Meng, T., Zhang, R., Song, M., Ren, J., Removal of sulfonamide antibiotics and human metabolite by biochar and biochar/H2O2 in synthetic urine (2018) Water Res., 147, pp. 91-100
dc.relation.referencesLiu, Y., Peng, Y., An, B., Li, L., Liu, Y., Effect of molecular structure on the adsorption affinity of sulfonamides onto CNTs: batch experiments and DFT calculations (2020) Chemosphere, 246, p. 125778
dc.relation.referencesZhang, X., Zhang, Y., Ngo, H.H., Guo, W., Wen, H., Zhang, D., Li, C., Qi, L., Characterization and sulfonamide antibiotics adsorption capacity of spent coffee grounds based biochar and hydrochar (2020) Sci. Total Environ., 716, p. 137015
dc.relation.referencesWang, Y., Jiao, W., Wang, J., Liu, G., Cao, H., Lü, J., Amino-functionalized biomass-derived porous carbons with enhanced aqueous adsorption affinity and sensitivity of sulfonamide antibiotics (2019) Bioresour. Technol., 277, pp. 128-135
dc.relation.referencesYang, Y., Zheng, L., Zhang, T., Yu, H., Zhan, Y., Yang, Y., Zeng, H., Peng, D., Adsorption behavior and mechanism of sulfonamides on phosphonic chelating cellulose under different pH effects (2019) Bioresour. Technol., 288, p. 121510
dc.relation.referencesBraschi, I., Blasioli, S., Gigli, L., Gessa, C.E., Alberti, A., Martucci, A., Removal of sulfonamide antibiotics from water: evidence of adsorption into an organophilic zeolite Y by its structural modifications (2010) J. Hazard. Mater., 178, pp. 218-225
dc.relation.referencesXie, M., Chen, W., Xu, Z., Zheng, S., Zhu, D., Adsorption of sulfonamides to demineralized pine wood biochars prepared under different thermochemical conditions (2014) Environ. Pollut., 186, pp. 187-194
dc.relation.referencesBraschi, I., Martucci, A., Blasioli, S., Mzini, L.L., Ciavatta, C., Cossi, M., Effect of humic monomers on the adsorption of sulfamethoxazole sulfonamide antibiotic into a high silica zeolite Y: an interdisciplinary study (2016) Chemosphere, 155, pp. 444-452
dc.relation.referencesZuo, X., Qian, C., Ma, S., Xiong, J., Sulfonamide antibiotics sorption by high silica ZSM-5: effect of pH and humic monomers (vanillin and caffeic acid) (2020) Chemosphere, 248, p. 126061
dc.relation.referencesAhmed, M.B., Zhou, J.L., Ngo, H.H., Guo, W., Johir, M.A.H., Sornalingam, K., Single and competitive sorption properties and mechanism of functionalized biochar for removing sulfonamide antibiotics from water (2017) Chem. Eng. J., 311, pp. 348-358
dc.relation.referencesAhsan, M.A., Islam, M.T., Hernandez, C., Castro, E., Katla, S.K., Kim, H., Lin, Y., Noveron, J.C., Biomass conversion of saw dust to a functionalized carbonaceous materials for the removal of tetracycline, sulfamethoxazole and bisphenol A from water (2018) J. Environ. Chem. Eng., 6, pp. 4329-4338
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem