Show simple item record

dc.contributor.authorUrán-Duque L
dc.contributor.authorSaldarriaga-Molina J.C
dc.contributor.authorRubio-Clemente A.
dc.date.accessioned2022-09-14T14:33:27Z
dc.date.available2022-09-14T14:33:27Z
dc.date.created2021
dc.identifier.issn20734441
dc.identifier.urihttp://hdl.handle.net/11407/7376
dc.descriptionIn this work, the recent trends in the application of the sulfate radical-based advanced oxidation processes (SR-AOPs) for the treatment of wastewater polluted with emerging contaminants (ECs) and pathogenic load were systematically studied due to the high oxidizing power ascribed to these technologies. Additionally, because of the economic benefits and the synergies presented in terms of efficiency in ECs degradation and pathogen inactivation, the combination of the referred to AOPs and conventional treatments, including biological processes, was covered. Finally, the barriers and limitations related to the implementation of SR-AOPs were described, highlighting the still scarce full-scale implementation and the high operating-costs associated, especially when solar energy cannot be used in the oxidation systems. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.eng
dc.language.isoeng
dc.publisherMDPI
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85114555993&doi=10.3390%2fw13172445&partnerID=40&md5=bffba0f7f881dc4d21ca72df15caf379
dc.sourceWater (Switzerland)
dc.titleAdvanced oxidation processes based on sulfate radicals for wastewater treatment: Research trends
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambiental
dc.type.spaArtículo
dc.identifier.doi10.3390/w13172445
dc.subject.keywordAlternative technologyeng
dc.subject.keywordConventional systemeng
dc.subject.keywordEmerging contaminanteng
dc.subject.keywordNatural resourceeng
dc.subject.keywordPathogeneng
dc.subject.keywordOperating costseng
dc.subject.keywordOxidationeng
dc.subject.keywordSolar energyeng
dc.subject.keywordSolar power generationeng
dc.subject.keywordSulfur compoundseng
dc.subject.keywordAdvanced Oxidation Processeseng
dc.subject.keywordBiological processeng
dc.subject.keywordConventional treatmentseng
dc.subject.keywordEconomic benefitseng
dc.subject.keywordEmerging contaminant (ECs)eng
dc.subject.keywordFull-scale implementationeng
dc.subject.keywordOxidation Systemseng
dc.subject.keywordPathogen inactivationeng
dc.subject.keywordWastewater treatmenteng
dc.relation.citationvolume13
dc.relation.citationissue17
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationUrán-Duque, L., Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 67, No. 53-108, Medellín, 050010, Colombia
dc.affiliationSaldarriaga-Molina, J.C., Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 67, No. 53-108, Medellín, 050010, Colombia
dc.affiliationRubio-Clemente, A., Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 67, No. 53-108, Medellín, 050010, Colombia, Facultad de Ingenierías, Universidad de Medellín, Carrera, 87, No. 30-65, Medellín, 050030, Colombia
dc.relation.referencesLi, J.; Li, Y.; Xiong, Z.; Yao, G.; Lai, B. The electrochemical advanced oxidation processes coupling of oxidants for organic pollutants degradation: A mini-review. Chin. Chem. Lett. 2019, 30, 2139–2146. [CrossRef]
dc.relation.referencesMohapatra, D.P.; Kirpalani, D.M. Advancement in treatment of wastewater: Fate of emerging contaminants. Can. J. Chem. Eng. 2019, 97, 2621–2631. [CrossRef]
dc.relation.referencesGuerra-Rodríguez, S.; Rodríguez, E.; Singh, D.N.; Rodríguez-Chueca, J. Assessment of Sulfate Radical-Based Advanced Oxidation Processes for Water and Wastewater Treatment: A Review. Water 2018, 10, 1828. [CrossRef]
dc.relation.referencesAlamgholiloo, H.; Hashemzadeh, B.; Pesyan, N.N.; Sheikhmohammadi, A.; Asgari, E.; Yeganeh, J.; Hashemzadeh, H. A facile strategy for designing core-shell nanocomposite of ZIF-67/Fe3O4: A novel insight into ciprofloxacin removal from wastewater. Process. Saf. Environ. Prot. 2020, 147, 392–404. [CrossRef]
dc.relation.referencesAo, X.-W.; Eloranta, J.; Huang, C.-H.; Santoro, D.; Sun, W.-J.; Lu, Z.-D.; Li, C. Peracetic acid-based advanced oxidation processes for decontamination and disinfection of water: A review. Water Res. 2020, 188, 116479. [CrossRef]
dc.relation.referencesAhile, U.J.; Wuana, R.A.; Itodo, A.U.; Sha’Ato, R.; Malvestiti, J.A.; Dantas, R.F. Are iron chelates suitable to perform photo-Fenton at neutral pH for secondary effluent treatment? J. Environ. Manag. 2020, 278, 111566. [CrossRef]
dc.relation.referencesGiannakis, S.; Lin, K.-Y.A.; Ghanbari, F. A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs). Chem. Eng. J. 2020, 406, 127083. [CrossRef]
dc.relation.referencesLiu, K.; Bai, L.; Shi, Y.; Wei, Z.; Spinney, R.; Gökta¸s, R.K.; Dionysiou, D.; Xiao, R. Simultaneous disinfection of E. faecalis and degradation of carbamazepine by sulfate radicals: An experimental and modelling study. Environ. Pollut. 2020, 263, 114558. [CrossRef]
dc.relation.referencesZhou, C.-S.; Wu, J.-W.; Dong, L.-L.; Liu, B.-F.; Xing, D.-F.; Yang, S.-S.; Wu, X.-K.; Wang, Q.; Fan, J.-N.; Feng, L.-P.; et al. Removal of antibiotic resistant bacteria and antibiotic resistance genes in wastewater effluent by UV-activated persulfate. J. Hazard. Mater.2020, 388, 122070. [CrossRef]
dc.relation.referencesGiwa, A.; Yusuf, A.; Balogun, H.A.; Sambudi, N.S.; Bilad, M.R.; Adeyemi, I.; Chakraborty, S.; Curcio, S. Recent advances in advanced oxidation processes for removal of contaminants from water: A comprehensive review. Process. Saf. Environ. Prot. 2020, 146, 220–256. [CrossRef]
dc.relation.referencesSanabria, P.; Scunderlick, D.; Wilde, M.L.; Lüdtke, D.S.; Sirtori, C. Solar photo-Fenton treatment of the anti-cancer drug anastrozole in different aqueous matrices at near-neutral pH: Transformation products identification, pathways proposal, and in silico (Q)SAR risk assessment. Sci. Total Environ. 2020, 754, 142300. [CrossRef] [PubMed]
dc.relation.referencesCamargo-Perea, A.L.; Rubio-Clemente, A.; Peñuela, G.A. Use of Ultrasound as an Advanced Oxidation Process for the Degradation of Emerging Pollutants in Water. Water 2020, 12, 1068. [CrossRef]
dc.relation.referencesJureczko, M.; Kalka, J. Cytostatic pharmaceuticals as water contaminants. Eur. J. Pharmacol. 2019, 866, 172816. [CrossRef] [PubMed]
dc.relation.referencesRoshan, A.; Kumar, M. Water end-use estimation can support the urban water crisis management: A critical review. J. Environ. Manag. 2020, 268, 110663. [CrossRef]
dc.relation.referencesGao, P.; Cui, J.; Deng, Y. Direct regeneration of ion exchange resins with sulfate radical-based advanced oxidation for enabling a cyclic adsorption—Regeneration treatment approach to aqueous perfluorooctanoic acid (PFOA). Chem. Eng. J. 2020, 405, 126698. [CrossRef]
dc.relation.referencesNidheesh, P.; Scaria, J.; Babu, D.S.; Kumar, M.S. An overview on combined electrocoagulation-degradation processes for the effective treatment of water and wastewater. Chemosphere 2020, 263, 127907. [CrossRef]
dc.relation.referencesFattahi, A.; Arlos, M.J.; Bragg, L.M.; Kowalczyk, S.; Liang, R.; Schneider, O.M.; Zhou, N.; Servos, M.R. Photodecomposition of pharmaceuticals and personal care products using P25 modified with Ag nanoparticles in the presence of natural organic matter. Sci. Total Environ. 2020, 752, 142000. [CrossRef] [PubMed]
dc.relation.referencesMehdi, H.; Bragg, L.M.; Servos, M.R.; Craig, P.M. Multiple Stressors in the Environment: The Effects of Exposure to an Antidepressant (Venlafaxine) and Increased Temperature on Zebrafish Metabolism. Front.
dc.relation.referencesPhysiol. 2019, 10, 1431. [CrossRef]
dc.relation.referencesRostam, A.B.; Taghizadeh, M. Advanced oxidation processes integrated by membrane reactors and bioreactors for various wastewater treatments: A critical review. J. Environ. Chem. Eng. 2020, 8, 104566. [CrossRef]
dc.relation.referencesGarrido-Cardenas, J.A.; Esteban-García, B.; Agüera, A.; Sánchez-Pérez, J.A.; Manzano-Agugliaro, F. Wastewater Treatment by Advanced Oxidation Process and Their Worldwide Research Trends. Int. J. Environ. Res. Public Health 2019, 17, 170. [CrossRef]
dc.relation.referencesKhan, N.A.; Khan, S.U.; Ahmed, S.; Farooqi, I.H.; Yousefi, M.; Mohammadi, A.A.; Changani, F. Recent trends in disposal and treatment technologies of emerging-pollutants- A critical review. TrAC Trends Anal. Chem. 2019, 122, 115744. [CrossRef]
dc.relation.referencesRathi, B.S.; Kumar, P.S.; Show, P.-L. A review on effective removal of emerging contaminants from aquatic systems: Current trends and scope for further research. J. Hazard. Mater. 2020, 409, 124413. [CrossRef]
dc.relation.referencesSeibert, D.; Zorzo, C.F.; Borba, F.H.; de Souza, R.M.; Quesada, H.B.; Bergamasco, R.; Baptista, A.T.; Inticher, J.J. Occurrence, statutory guideline values and removal of contaminants of emerging concern by Electrochemical Advanced Oxidation Processes: A review. Sci. Total Environ. 2020, 748, 141527. [CrossRef] [PubMed]
dc.relation.referencesDi Cesare, A.; Corno, G.; Manaia, C.M.; Rizzo, L. Impact of disinfection processes on bacterial community in urban wastewater: Should we rethink microbial assessment methods? J. Environ. Chem. Eng. 2020, 8, 104393. [CrossRef]
dc.relation.referencesHunge, Y.; Yadav, A.; Khan, S.; Takagi, K.; Suzuki, N.; Teshima, K.; Terashima, C.; Fujishima, A. Photocatalytic degradation of bisphenol A using titanium dioxide@nanodiamond composites under UV light illumination. J. Colloid Interface Sci. 2020, 582, 1058–1066. [CrossRef]
dc.relation.referencesLiu, Y.; Zhao, Y.; Wang, J. Fenton/Fenton-like processes with in-situ production of hydrogen peroxide/hydroxyl radical for degradation of emerging contaminants: Advances and prospects. J. Hazard. Mater. 2020, 404, 124191. [CrossRef]
dc.relation.referencesOlvera-Vargas, H.; Gore-Datar, N.; Garcia-Rodriguez, O.; Mutnuri, S.; Lefebvre, O. Electro-Fenton treatment of real pharmaceutical wastewater paired with a BDD anode: Reaction mechanisms and respective contribution of homogeneous and heterogeneous OH. Chem. Eng. J. 2020, 404, 126524. [CrossRef]
dc.relation.referencesHao, Y.; Ma, H.; Wang, Q.; Ge, L.; Yang, Y.; Zhu, C. Refractory DOM in industrial wastewater: Formation and selective oxidation of AOPs. Chem. Eng. J. 2020, 406, 126857. [CrossRef]
dc.relation.referencesHomlok, R.; Kiskó, G.; Kovács, A.; Tóth, T.; Takács, E.; Mohácsi-Farkas, C.; Wojnárovits, L.; Szabó, L. Antibiotics in a wastewater matrix at environmentally relevant concentrations affect coexisting resistant/sensitive bacterial cultures with profound impact on advanced oxidation treatment. Sci. Total Environ. 2020, 754, 142181. [CrossRef]
dc.relation.referencesYongsheng, X.; Xintong, L.; Hongwei, H.; Yuexiao, S.; Qing, X.; Wenchao, P. Aminated N-doped graphene hydrogel for long-term catalytic oxidation in strong acidic environment. J. Hazard. Mater. 2020, 401, 123742. [CrossRef]
dc.relation.referencesDuan, X.; Yang, S.; Wacławek, S.; Fang, G.; Xiao, R.; Dionysiou, D.D. Limitations and prospects of sulfate-radical based advanced oxidation processes. J. Environ. Chem. Eng. 2020, 8, 103849. [CrossRef]
dc.relation.referencesGuo, P.-C.; Qiu, H.-B.; Yang, C.-W.; Zhang, X.; Shao, X.-Y.; Lai, Y.-L.; Sheng, G.-P. Highly efficient removal and detoxification of phenolic compounds using persulfate activated by MnOx@OMC: Synergistic mechanism and kinetic analysis. J. Hazard. Mater. 2020, 402, 123846. [CrossRef]
dc.relation.referencesSun, Z.; Liu, X.; Dong, X.; Zhang, X.; Tan, Y.; Yuan, F.; Zheng, S.; Li, C. Synergistic activation of peroxymonosulfate via in situ growth FeCo2O4 nanoparticles on natural rectorite: Role of transition metal ions and hydroxyl groups. Chemosphere 2020, 263, 127965. [CrossRef] [PubMed]
dc.relation.referencesMonteoliva-García, A.; Martín-Pascual, J.; Muñío, M.; Poyatos, J. Effects of carrier addition on water quality and pharmaceutical removal capacity of a membrane bioreactor—Advanced oxidation process combined treatment. Sci. Total Environ. 2019, 708, 135104. [CrossRef] [PubMed]
dc.relation.referencesLicciardello, F.; Milani, M.; Consoli, S.; Pappalardo, N.; Barbagallo, S.; Cirelli, G. Wastewater tertiary treatment options to match reuse standards in agriculture. Agric. Water Manag. 2018, 210, 232–242. [CrossRef]
dc.relation.referencesQi, W.; Zhu, S.; Shitu, A.; Ye, Z.; Liu, D. Low concentration peroxymonosulfate and UVA-LED combination for E. coli inactivation and wastewater disinfection from recirculating aquaculture systems. J. Water Process. Eng. 2020, 36, 101362. [CrossRef]
dc.relation.referencesXie, Y.; Dai, J.; Chen, G. Feasibility study on applying the iron-activated persulfate system as a pre-treatment process for clofibric acid selective degradation in municipal wastewater. Sci. Total Environ. 2020, 739, 140020. [CrossRef]
dc.relation.referencesGao, Y.-Q.; Zhang, J.; Zhou, J.-Q.; Li, C.; Gao, N.-Y.; Yin, D.-Q. Persulfate activation by nano zero-valent iron for the degradation of metoprolol in water: Influencing factors, degradation pathways and toxicity analysis. RSC Adv. 2020, 10, 20991–20999. [CrossRef]
dc.relation.referencesYu, C.; Wen, M.; Li, S.; Tong, Z.; Yin, Y.; Liu, X.; Li, Y.; Wu, Z.; Dionysiou, D.D. Elbaite catalyze peroxymonosulfate for advanced oxidation of organic pollutants: Hydroxyl groups induced generation of reactive oxygen species. J. Hazard. Mater. 2020, 398, 122932. [CrossRef]
dc.relation.referencesDibene, K.; Yahiaoui, I.; Aitali, S.; Khenniche, L.; Amrane, A.; Aissani-Benissad, F. Central composite design applied to paracetamol degradation by heat-activated peroxydisulfate oxidation process and its relevance as a pretreatment prior to a biological treatment. Environ. Technol. 2019, 42, 905–913. [CrossRef]
dc.relation.referencesShad, A.; Chen, J.; Qu, R.; Dar, A.A.; Bin-Jumah, M.; Allam, A.A.; Wang, Z. Degradation of sulfadimethoxine in phosphate buffer solution by UV alone, UV/PMS and UV/H2O2: Kinetics, degradation products, and reaction pathways. Chem. Eng. J. 2020, 398, 125357. [CrossRef]
dc.relation.referencesWang, F.; Wang, W.; Yuan, S.; Wang, W.; Hu, Z.-H. Comparison of UV/H2O2 and UV/PS processes for the degradation of thiamphenicol in aqueous solution. J. Photochem. Photobiol. A Chem. 2017, 348, 79–88. [CrossRef]
dc.relation.referencesMousel, D.; Bastian, D.; Firk, J.; Palmowski, L.; Pinnekamp, J. Removal of pharmaceuticals from wastewater of health care facilities. Sci. Total Environ. 2020, 751, 141310. [CrossRef]
dc.relation.referencesMongeon, P.; Paul-Hus, A. The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics 2015, 106, 213–228. [CrossRef]
dc.relation.referencesQu, J.; Wang, H.; Wang, K.; Yu, G.; Ke, B.; Yu, H.-Q.; Ren, H.; Zheng, X.; Li, J.; Li, W.-W.; et al. Municipal wastewater treatment in China: Development history and future perspectives. Front. Environ. Sci. Eng. 2019, 13, 88. [CrossRef]
dc.relation.referencesCherchi, C.; Kesaano, M.; Badruzzaman, M.; Schwab, K.; Jacangelo, J.G. Municipal reclaimed water for multi-purpose applications in the power sector: A review. J. Environ. Manag. 2019, 236, 561–570. [CrossRef]
dc.relation.referencesChanikya, P.; Nidheesh, P.; Babu, D.S.; Gopinath, A.; Kumar, M.S. Treatment of dyeing wastewater by combined sulfate radical based electrochemical advanced oxidation and electrocoagulation processes. Sep. Purif. Technol. 2020, 254, 117570. [CrossRef]
dc.relation.referencesKiani, R.; Mirzaei, F.; Ghanbari, F.; Feizi, R.; Mehdipour, F. Real textile wastewater treatment by a sulfate radicals-Advanced Oxidation Process: Peroxydisulfate decomposition using copper oxide (CuO) supported onto activated carbon. J. Water Process. Eng. 2020, 38, 101623. [CrossRef]
dc.relation.referencesWang, S.; Liu, Y.; Wang, J. Peroxymonosulfate Activation by Fe–Co–O-Codoped Graphite Carbon Nitride for Degradation of Sulfamethoxazole. Environ. Sci. Technol. 2020, 54, 10361–10369. [CrossRef] [PubMed]
dc.relation.referencesChekem, C.T.; Chiron, S.; Mancaux, J.; Plantard, G.; Goetz, V. Thermal activation of persulfates for wastewater depollution on pilot scale solar equipment. Sol. Energy 2020, 205, 372–379. [CrossRef]
dc.relation.referencesNaim, S.; Ghauch, A. Ranitidine abatement in chemically activated persulfate systems: Assessment of industrial iron waste for sustainable applications. Chem. Eng. J. 2016, 288, 276–288. [CrossRef]
dc.relation.referencesYang, Q.; Ma, Y.; Chen, F.; Yao, F.; Sun, J.; Wang, S.; Yi, K.; Hou, L.; Li, X.; Wang, D. Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water. Chem. Eng. J. 2019, 378, 122149. [CrossRef]
dc.relation.referencesSoleymani, A.R.; Moradi, M. Performance and modeling of UV/persulfate/Ce(IV) process as a dual oxidant photochemical treatment system: Kinetic study and operating cost estimation. Chem. Eng. J. 2018, 347, 243–251. [CrossRef]
dc.relation.referencesManos, D.; Miserli, K.; Konstantinou, I. Perovskite and Spinel Catalysts for Sulfate Radical-Based Advanced Oxidation of Organic Pollutants in Water and Wastewater Systems. Catalysts 2020, 10, 1299. [CrossRef]
dc.relation.referencesDing, J.; Shen, L.; Yan, R.; Lu, S.; Zhang, Y.; Zhang, X.; Zhang, H. Heterogeneously activation of H2O2 and persulfate with goethite for bisphenol A degradation: A mechanistic study. Chemosphere 2020, 261, 127715. [CrossRef] [PubMed]
dc.relation.referencesStathoulopoulos, A.; Mantzavinos, D.; Frontistis, Z. Coupling Persulfate-Based AOPs: A Novel Approach for Piroxicam Degradation in Aqueous Matrices. Water 2020, 12, 1530. [CrossRef]
dc.relation.referencesMa, J.; Yang, Y.; Jiang, X.; Xie, Z.; Li, X.; Chen, C.; Chen, H. Impacts of inorganic anions and natural organic matter on thermally activated persulfate oxidation of BTEX in water. Chemosphere 2018, 190, 296–306. [CrossRef]
dc.relation.referencesChi, H.; Wan, J.; Ma, Y.; Wang, Y.; Huang, M.; Li, X.; Pu, M. ZSM-5-(C@Fe) activated peroxymonosulfate for effectively degrading ciprofloxacin: In-depth analysis of degradation mode and degradation path. J. Hazard. Mater. 2020, 398, 123024. [CrossRef]
dc.relation.referencesFauzi, A.; Jalil, A.; Hitam, C.; Aziz, F.; Chanlek, N. Superior sulfate radicals-induced visible-light-driven photodegradation of pharmaceuticals by appropriate Ce loading on fibrous silica ceria. J. Environ. Chem. Eng. 2020, 8, 104484. [CrossRef]
dc.relation.referencesForouzesh, M.; Ebadi, A.; Aghaeinejad-Meybodi, A. Continuous fixed-bed oxidation of metronidazole by the sulfate radical based process over nitric acid treated granular activated carbon. J. Water Process. Eng. 2020, 36, 101280. [CrossRef]
dc.relation.referencesRen, H.; Li, C.; Han, Z.; Li, T.; Jin, X.; Zhou, R. Magnetic mesoporous FeCo2O4—Fe3O4 microrods as novel peroxymonosulfate activators for effective metronidazole degradation. J. Chem. Technol. Biotechnol. 2020, 95, 3202–3212. [CrossRef]
dc.relation.referencesWang, B.; Fu, T.; An, B.; Liu, Y. UV light-assisted persulfate activation by Cu0-Cu2O for the degradation of sulfamerazine. Sep. Purif. Technol. 2020, 251, 117321. [CrossRef]
dc.relation.referencesLi, H.; Yao, Y.; Zhang, J.; Du, J.; Xu, S.; Wang, C.; Zhang, D.; Tang, J.; Zhao, H.; Zhou, J. Degradation of phenanthrene by peroxymonosulfate activated with bimetallic metal-organic frameworks: Kinetics, mechanisms, and degradation products. Chem. Eng. J. 2020, 397, 125401. [CrossRef]
dc.relation.referencesHuang, Z.-H.; Ji, Z.-Y.; Zhao, Y.-Y.; Liu, J.; Li, F.; Wang, S.-Z.; Yuan, J.-S. Efficient degradation of 2-methoxyphenol using heterogeneous-homogeneous synergistic activated persulfate with modified clinoptilolite + heat. Chem. Eng. J. 2020, 400, 125863. [CrossRef]
dc.relation.referencesFernandes, A.; Mako´s, P.; Khan, J.A.; Boczkaj, G. Pilot scale degradation study of 16 selected volatile organic compounds by hydroxyl and sulfate radical based advanced oxidation processes. J. Clean. Prod. 2018, 208, 54–64. [CrossRef]
dc.relation.referencesPa´zdzior, K.; Bili ´nska, L.; Ledakowicz, S. A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment. Chem. Eng. J. 2018, 376, 120597. [CrossRef]
dc.relation.referencesDhangar, K.; Kumar, M. Tricks and tracks in removal of emerging contaminants from the wastewater through hybrid treatment systems: A review. Sci. Total Environ. 2020, 738, 140320. [CrossRef]
dc.relation.referencesOller, I.; Malato, S.; Pérez, J.A.S. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination—A review. Sci. Total Environ. 2011, 409, 4141–4166. [CrossRef]
dc.relation.referencesThanikkal, M.P.; Antony, S.P. Integrated Electro-Fenton and Membrane Bioreactor System for Matured Landfill Leachate Treatment. J. Hazard. Toxic Radioact. Waste 2021, 25, 04020058. [CrossRef]
dc.relation.referencesSathya, U.; Nithya, M.; Balasubramanian, N. Evaluation of advanced oxidation processes (AOPs) integrated membrane biorreactor (MBR) for the real textile wastewater treatment. J. Environ. Manag. 2019, 246, 768–775. [CrossRef]
dc.relation.referencesGuo, Y.; Liang, H.; Li, G.; Xu, D.; Yan, Z.; Chen, R.; Zhao, J.; Tang, X. A solar photo-thermochemical hybrid system using peroxydisulfate for organic matters removal and improving ultrafiltration membrane performance in surface water treatment. Water Res. 2020, 188, 116482. [CrossRef]
dc.relation.referencesPramanik, B.K.; Shu, L.; Jegatheesan, V.; Bhuiyan, M.A. Effect of the coagulation/persulfate pre-treatment to mitigate organic fouling in the forward osmosis of municipal wastewater treatment. J. Environ. Manag. 2019, 249, 109394. [CrossRef]
dc.relation.referencesQu, F.; Yang, Z.; Li, X.; Yu, H.; Pan, Z.; Fan, G.; He, J.; Rong, H. Membrane fouling control by UV/persulfate in tertiary wastewater treatment with ultrafiltration: A comparison with UV/hydroperoxide and role of free radicals. Sep. Purif. Technol. 2020, 257, 117877. [CrossRef]
dc.relation.referencesMao, G.; Hu, H.; Liu, X.; Crittenden, J.; Huang, N. A bibliometric analysis of industrial wastewater treatments from 1998 to 2019. Environ. Pollut. 2020, 275, 115785. [CrossRef]
dc.relation.referencesSharma, A.; Ahmad, J.; Flora, S. Application of advanced oxidation processes and toxicity assessment of transformation products. Environ. Res. 2018, 167, 223–233. [CrossRef]
dc.relation.referencesCai, C.; Liu, J.; Zhang, Z.; Zheng, Y.; Zhang, H. Visible light enhanced heterogeneous photo-degradation of Orange II by zinc ferrite (ZnFe2O4) catalyst with the assistance of persulfate. Sep. Purif. Technol. 2016, 165, 42–52. [CrossRef]
dc.relation.referencesAmor, C.; Marchão, L.; Lucas, M.S.; Peres, J.A. Application of Advanced Oxidation Processes for the Treatment of Recalcitrant Agro-Industrial Wastewater: A Review. Water 2019, 11, 205. [CrossRef]
dc.relation.referencesRibeiro, J.P.; Marques, C.C.; Portugal, I.; Nunes, M.I. Fenton processes for AOX removal from a kraft pulp bleaching industrial wastewater: Optimisation of operating conditions and cost assessment. J. Environ. Chem. Eng. 2020, 8, 104032. [CrossRef]
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record