Show simple item record

dc.contributor.authorAgudelo E.A
dc.contributor.authorCardona G S.A.
dc.date.accessioned2022-09-14T14:33:27Z
dc.date.available2022-09-14T14:33:27Z
dc.date.created2021
dc.identifier.issn1919512
dc.identifier.urihttp://hdl.handle.net/11407/7377
dc.descriptionAn advanced oxidation system based on ozone, activated carbon and Portland cement was evaluated for the removal of the beta-lactam antibiotic Meropenem (emerging contaminant, EC). This system was validated with synthetic wastewater with characteristics similar to those of hospital wastewater. The total elimination of the antibiotic and a 90% reduction in the initial chemical oxygen demand (COD) associated with the EC were obtained. The acute toxicity of the water decreased 100% until becoming innocuous for the test microorganisms (E. coli and staphylococcus aureus). A new proposal for an oxidation index was presented which allowed finding a functional relationship between the process variables and the removal efficiency of the Meropenem antibiotic. The results of this investigation showed that the joint use of a pseudo-catalyst such as solid Portland cement (paste), activated carbon powder fixed to an inert glass matrix and ozone, improves the efficiency in the production of hydroxyl radicals when compared to other ozone-based technologies. This conclusion was demonstrated with the oxidation of a test compound (para-chlorobenzoic acid) that allowed determining the amount of hydroxyl radicals formed in the proposed system. © 2020 International Ozone Association.eng
dc.language.isoeng
dc.publisherBellwether Publishing, Ltd.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85088984309&doi=10.1080%2f01919512.2020.1796582&partnerID=40&md5=bb4dde3b2537162ec056d13db81e93fd
dc.sourceOzone: Science and Engineering
dc.titleAdvanced Oxidation Technology (Ozone-catalyzed by Powder Activated Carbon - Portland Cement) for the Degradation of the Meropenem Antibiotic
dc.typeReview
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambiental
dc.type.spaRevisión
dc.identifier.doi10.1080/01919512.2020.1796582
dc.subject.keywordActivated carboneng
dc.subject.keywordAdvanced oxidationeng
dc.subject.keywordCatalytic ozonationeng
dc.subject.keywordHydroxyl radicalseng
dc.subject.keywordOxalic acideng
dc.subject.keywordOzoneeng
dc.subject.keywordpCBAeng
dc.subject.keywordPortland cementeng
dc.subject.keywordActivated carboneng
dc.subject.keywordAntibioticseng
dc.subject.keywordBacteriaeng
dc.subject.keywordCement industryeng
dc.subject.keywordEfficiencyeng
dc.subject.keywordGlass industryeng
dc.subject.keywordOxidationeng
dc.subject.keywordOzoneeng
dc.subject.keywordPortland cementeng
dc.subject.keywordActivated carbon powdereng
dc.subject.keywordAdvanced oxidation technologyeng
dc.subject.keywordEmerging contaminanteng
dc.subject.keywordFunctional relationshipeng
dc.subject.keywordHospital wastewatereng
dc.subject.keywordPowder activated carboneng
dc.subject.keywordRemoval efficiencieseng
dc.subject.keywordSynthetic waste watereng
dc.subject.keywordChemical oxygen demandeng
dc.relation.citationvolume43
dc.relation.citationissue1
dc.relation.citationstartpage88
dc.relation.citationendpage105
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationAgudelo, E.A., Professor Universidad de Medellín- Medellín, Hydraulic Resources, Environmental Studies and Development, Chemical Engineering050026, Colombia
dc.affiliationCardona G, S.A., Professor Universidad Nacional de Colombia, Environmental Engineering, Medellín, 050034, Colombia
dc.relation.referencesAgudelo, E.A., Modelo cinético para la degradación de contaminantes emergentes (antibióticos) presentes en un agua residual, bajo un sistema de tratamiento secuencial vermifiltración–Tecnologías de oxidación avanzada (2019) Ph.D Diss., , Universidad Nacional de Colombia
dc.relation.referencesAgudelo, E.A., Cardona, S., Selection of Catalysts for Use in a Heterogeneous Catalytic Ozonation System (2019) Ozone: Science and Engineering, 42 (2), pp. 1-11
dc.relation.referencesAl-Ahmad, A., Daschner, F., Kummerer, K., Biodegradability of Cefotiam, Ciprofloxacin, Meropenem, Penicillin G, and Sulfamethoxazole and Inhibition of Wastewater Bacteria (1999) Archives of Environmental Contamination and Toxicology, 37 (2), pp. 158-163
dc.relation.referencesAlexy, R., Kümpel, K., Kummerer, T., Assessment of Degradation of 18 Antibiotics in the Closed Bottle Test (2004) Chemosphere, 57 (6), pp. 505-512
dc.relation.referencesAlmomani, F., Shawaqfah, M., Bhosale, R., Kumara, A., Removal of Emerging Pharmaceuticals from Wastewater by Ozone-Based Advanced Oxidation Processes (2016) Environmental Progress & Sustainable Energy, 35 (4), pp. 982-995
dc.relation.referencesÁlvarez, P., García-Araya, J., Beltrán, F., Giráldez, I., Jaramillo, J., Gómez-Serrano, V., The Influence of Various Factors on Aqueous Ozone Decomposition by Granular Activated Carbons and the Development of a Mechanistic Approach (2006) Carbon, 44 (14), pp. 3102-3112
dc.relation.referencesÁlvarez, H., Lamanna, R., Vega, P., Revollar, S., Metodología para la obtención de modelos semifísicos de base fenomenológica aplicada a una planta sulfitadora de jugo de caña azúcar (2009) Revista Iberoamericana de Automática e Informática Industrial, 6 (3), pp. 10-20
dc.relation.referencesBeltrán, F., Rivas, F., Montero-de-Espinosa, R., Iron Type Catalysts for the Ozonation of Oxalic Acid in Water (2005) Water Research, 39 (15), pp. 3553-3564
dc.relation.referencesBeltrán, F., Rivas, J., Álvarez, P., Alonso, M., Acedo, B., A Kinetic Model for Advanced Oxidation Processes of Aromatic Hydrocarbons in Water: Application to Phenanthrene and Nitrobenzene (1999) Industrial & Engineering Chemistry Research, 38 (11), pp. 4189-4199
dc.relation.referencesBeltrán, F., Rivas, J., Álvarez, P., Montero-de-Espinosa, R., Kinetics of Catalytic Ozonation of Oxalic Acid in Water with Activated Carbon (2002) Industrial & Engineering Chemistry Research, 41 (25), pp. 6510-6517
dc.relation.referencesBeltrán, F., Pocostales, P., Alvarez, P., Oropesa, A., Diclofenac Removal from Water with Ozone and Activated Carbon (2009) Journal of Hazardous Materials, 163 (2-3), pp. 768-776
dc.relation.referencesBeltrán, F.J., (2004) Ozone Reaction Kinetics for Water and Wastewater Systems, , Boca Raton, FL: Lewis Publisher
dc.relation.referencesBotero-Coy, A.M., Martínez-Pachón, D., Boix, C., Rincón, R.J., Castillo, N., Arias-Marín, L.P., Manrique-Losada, L., Hernández, F., An Investigation into the Occurrence and Removal of Pharmaceuticals in Colombian Wastewater (2018) Science of the Total Environment, 642, pp. 842-853
dc.relation.referencesCastellan, G.W., (1987) Fisicoquímica, , 2rd, México:. Second Edition., : Addison Wesley Iberoamericana
dc.relation.referencesDe la Cruz, N., Giménez, J., Esplugas, S., Grandjean, D., De Alencastro, L.F., Pulgarín, C., Degradation of 32 Emergent Contaminants by UV and Neutral photo-Fenton in Domestic Wastewater Effluent Previously Treated by Activated Sludge (2012) Water Resource, 6 (6), pp. 1947-1957
dc.relation.references(2017) Estudio Sectorial de los servicios públicos domiciliarios de Acueducto y Alcantarillado, , Bogotá, Colombia
dc.relation.referencesElovitz, M., von Gunten, U., Hydroxyl Radical/Ozone Ratios During Ozonation Processes. I. The Rct Concept (1999) Ozone: Science & Engineering, 21 (3), pp. 239-260
dc.relation.referencesElovitz, M., von Gunten, U., Kaiser, H., Hydroxyl Radical/Ozone Ratios during Ozonation Processes. II. The Effect of Temperature, pH, Alkalinity, and DOM Properties (2000) Ozone: Science & Engineering: The Journal of the International Ozone Association, 22 (2), pp. 123-150
dc.relation.references(1993) Method 410.4, Revision 2.0: The Determination of Chemical Oxygen Demand by Semi-Automated Colorimetry, , U.S.A
dc.relation.references(2013) Literature Review of Contaminants in Livestockand Poultry Manure and Implications for Water Quality, , U.S.A:. National Service Center for Environmental Publications (NSCEP
dc.relation.referencesFaria, P., Órfao, J., Pereira, M., Catalytic Ozonation of Sulfonated Aromatic Compounds in the Presence of Activated Aarbon (2008) Applied Catalysis B: Environmental, 83 (1-2), pp. 150-159
dc.relation.referencesFaria, P., Órfao, J., Pereira, M., Activated Carbon and Ceria Catalysts Applied to the Catalytic Ozonation of Dyes and Textile Effluents (2009) Applied Catalysis B: Environmental, 88 (3-4), pp. 341-350
dc.relation.referencesGiannakis, S., Gamarra, F., Grandjean, D., Magnet, A., De Alencastro, L., Pulgarin, C., Effect of Advanced Oxidation Processes on the Micropollutants and the Effluent Organic Matter Contained in Municipal Wastewater Previously Treated by Three Different Secondary Methods (2015) Water Research, 84, pp. 295-306
dc.relation.referencesGottschalk, C., Libra, J., Saupe, A., (2010) Ozonation of Water and Waste Water: A Practical Guide to Understanding Ozone and Its Applications, , Weinheim, Germany: WILEY-VCH
dc.relation.referencesGrisales, D., Chaparro, T., Remoción De La Materia Orgánica Y Toxicidad En Aguas Residuales Hospitalarias Aplicando Ozono (2012) Dyna, 79 (173), pp. 109-115
dc.relation.referencesGust, M., Gélinas, M., Fortie, M., Fournier, M., Gagné, F., In Vitro Immunotoxicity of Environmentally Representative Antibiotics to the Freshwater Mussel Elliptio Complanata (2012) Environmental Pollution, 169, pp. 50-58
dc.relation.referencesGutiérrez, G., Relación Entre El Consumo De Antibióticos Y La Resistencia Bacteriana En Instituciones Colombianas De Tercer Nivel De Atención (2009) Tesis de Grado, , http://file:///C:/Users/Alexander/Downloads/Tesis.pdf, Universidad Nacional de Colombia. Facultad de medicina. Instituto de investigaciones clínicas Bogotá
dc.relation.referencesHoigné, J., Bader, H., Rate Constants of Reaction of Ozone with Organic and Inorganic Compounds in Water (1983) Water Research, 17 (2), pp. 173-183
dc.relation.referencesHomem, V., Alves, A., Santos, L., Amoxicillin Degradation at Ppb Levels by Fenton’s Oxidation Using Design of Experiments (2010) Science of the Total Environment, 408 (24), pp. 6272-6280
dc.relation.referencesHrabák, J., Walková, R., Studentová, V., Chudácková, E., Bergerová, T., Carbapenemase Activity Detection by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (2011) Journal of Clinical Microbiology, 49 (9), pp. 3222-3227
dc.relation.references(2018) Protocolo de Vigilancia en Salud Pública Consumo Antibiótico en el Ámbito Hospitalario, , Bogotá, Colombia:. Instituto Nacional de Salud de Colombia
dc.relation.referencesJans, U., Hoigné, J., Activated Carbon and Carbon Black Catalyzed Transformation of Aqueous Ozone into
dc.relation.referencesOH Radicals (1998) Ozone: Science and Engineering, 20 (1), pp. 67-87
dc.relation.referencesJohnson, A., Keller, V., Dumont, E., Sumpter, J.P., Assessing the Concentrations and Risks of Toxicity from the Antibiotics Ciprofloxacin, Sulfamethoxazole, Trimethoprim and Erythromycin in European Rivers (2015) Science of the Total Environment, 511, pp. 747-755
dc.relation.referencesJorgensen, J., Ferraro, M., Antimicrobial Susceptibility Testing: A Review of General Principles and Contemporary Practices (2009) Clinical Infectious Diseases, 49 (11), pp. 1749-1755
dc.relation.referencesJung, H., Choi, H., Catalytic Decomposition of Ozone and para-Chlorobenzoic Acid (Pcba) in the Presence of Nanosized ZnO (2006) Applied Catalysis B: Environmental, 66 (3-4), pp. 288-294
dc.relation.referencesKovalova, L.Y., L. McArdell, C., Von Gunten, U., Prediction of Micropollutant Elimination during Ozonation of a Hospital Wastewater Effluent (2014) Water Research, 64 (2014), pp. 134-148
dc.relation.referencesLee, Y., von Gunten, U., Oxidative Transformation of Micropollutants during Municipal Wastewater Treatment: Comparison of Kinetic Aspects of Selective (Chlorine, Chlorine Dioxide, FerrateVI, and Ozone) and Non-Selective Oxidants (Hydroxyl Radical) (2010) Water Research, 44 (2), pp. 555-566
dc.relation.referencesLizarazo, J., Orjuela, M., (2013) Sistemas de plantas de tratamiento de aguas residuales en Colombia. Monografía, , Bogotá, Colombia: Universidad Nacional de Colombia
dc.relation.referencesLópez-Zamora, S.M., Gilpavas, E., Gomez-Garcia, M., Dobrosz-Gomez, I., Foto-degradación de fenol sobre catalizadores de TiO2 y Mo/TiO2: La metodología de superficie de respuesta como herramienta de optimización (2014) Información Tecnológica, 25 (5), pp. 2-10
dc.relation.references(2015) Resolución 631 De 2015, , Bogotá: Colombia
dc.relation.referencesMarín, J., Navío, J., Rios, L., Restrepo, G., Soporte de Nuevas Películas de TiO2 y TiO2/SiO2 sobre Gránulos de Poliéster para Aplicación en Fotocatálisis (2008) Información Tecnológica, 19 (6), pp. 9-20
dc.relation.referencesMeffe, R., De Bustamante, I., Emerging Organic Contaminants in Surface Water and Groundwater: A First Overview of the Situation in Italy (2014) Science of the Total Environment, 481, pp. 280-295
dc.relation.referencesMendez, A., Dalomo, J., Steppe, M., Schapoval, E., Stability and Degradation Kinetics of Meropenem in Powder for Injection and Reconstituted Sample (2006) Journal of Pharmaceutical and Biomedical Analysis, 41 (4), pp. 363-1366
dc.relation.referencesMendez, A., Steppe, M., Schapoval, E., Validation of HPLC and UV Spectrophotometric Methods for the Determination of Meropenem in Pharmaceutical Dosage Form (2003) Journal of Pharmaceutical and Biomedical Analysis, 33 (5), pp. 947-954
dc.relation.referencesChagastelles, M.A., Palma, P., Nardi, E., Schapoval, N., Thermal and alkaline stability of meropenem: Degradation products and cytotoxicity (2008) International Journal of PHarmaceutics, 350, pp. 95-102. , E
dc.relation.referencesMontgomery, D., (2001) Design and Analysis of Experiments, , 5th, U.S.A.: Wiley and Sons
dc.relation.referencesMuñoz, I., Gómez, M., Molina-Díaz, A., Huijbregts Mark, A., Fernández-Alba, A., García-Calvo, E., Ranking Potential Impacts of Priority and Emerging Pollutants in Urban Wastewater through Life Cycle Impact Assessment (2008) ChemospHere, 74 (1), pp. 37-44
dc.relation.referencesNothe, T., Fahlenkamp, H., Sonntag, C., Ozonation of Wastewater: Rate of Ozone Consumption and Hydroxyl Radical Yield (2009) Environmental Science & Technology, 43 (15), pp. 5990-5995
dc.relation.referencesPallares, C., Martinez, E., Implementación De Un Programa De Uso Regulado De Antibióticos En 2 Unidades De Cuidado Intensivo Médico-quirúrgico En Un Hospital Universitario De Tercer Nivel En Colombia (2012) Infectio Asociación Colombiana De Infectología, 16, p. 4
dc.relation.referencesPark, J., Choi, H., Cho, J., Kinetic Decomposition of Ozone and para-Chlorobenzoic Acid (Pcba) during Catalytic Ozonation (2004) Water Research, 38 (9), pp. 2284-2291
dc.relation.referencesPereira, M., Gonçalves, A., Órfão, J., Carbon Materials as Catalysts for the Ozonation of Organic Pollutants in Water (2014) Boletín del Grupo Español del Carbón, 31, pp. 18-24
dc.relation.referencesPetrie, B., Barden, R., Kasprzyk-Hordern, B., A Review on Emerging Contaminants in Wastewaters and the Environment: Current Knowledge, Understudied Areas and Recommendations for Future Monitoring (2014) Water Research, 72, pp. 3-27
dc.relation.referencesPi, Y., Schumacher, J., Jekel, M., The Use of para-Chlorobenzoic Acid (Pcba) as an Ozone/Hydroxyl Radical Probe Compound (2005) Ozone: Science and Engineering, 27 (6), pp. 431-436
dc.relation.referencesPocostales, J., Álvarez, P., Beltrán, F., Kinetic Modeling of Powdered Activated Carbon Ozonation of Sulfamethoxazole in Water (2010) Chemical Engineering Journal, 164 (1), pp. 70-76
dc.relation.referencesProsser, R., Sibley, P., Human Health Risk Assessment of pHarmaceuticals and Personal Care Products in Plant Tissue Due to Biosolids and Manure Amendments, and Wastewater Irrigation (2015) Environment International, , 75:  223-233
dc.relation.referencesRosenfeldt, E., Linden, K., Canonica, S., Von Gunten, U., Comparison of the Efficiency of OH Radical Formation during Ozonation and the Advanced Oxidation Processes O3/H2O2 and UV/H2O2 (2006) Water Research, 40 (20), pp. 3695-3704
dc.relation.referencesSánchez-Polo, M., von Gunten, U., Rivera-Utrilla, J., Efficiency of Activated Carbon to Transform Ozone into
dc.relation.referencesOH Radicals: Influence of Operational Parameters (2005) Water Research, 39 (14), pp. 3189-3198
dc.relation.referencesSanz, J., Lombraña, J., de Luis, A., Estado del arte en la oxidación avanzada a efluentes industriales: Nuevos desarrollos y futuras tendencias (2013) Afinidad, 70 (561), pp. 25-33
dc.relation.referencesShahidi, D., Roy, R., Azzouz, A., Advances in Catalytic Oxidation of Organic Pollutants–Prospects for Thorough Mineralization by Natural Clay Catalysts (2015) Applied Catalysis B: Environmental, 174-175, pp. 277-292
dc.relation.referencesShechter, H., Spectrophotometric Method for Determination of Ozone in Aqueous Solutions (1973) Water Research, 7 (5), pp. 729-739
dc.relation.referencesSingh, R., Puspendu, B., Dash, R., A Mechanistic Review on Vermifiltration of Wastewater: Design, Operation and Performance (2017) Journal of Environmental Management, 197, pp. 656-672
dc.relation.referencesSzabo, H., Tuhkanen, T., UV/VIS Spectroscopy as a Method to Characterize Well Water Quality (2016) Journal of Water Management and Research, 72 (3), pp. 169-175
dc.relation.referencesVerma, P., Kumar, J., Degradation and Microbiological Validation of Meropenem Antibiotic in Aqueous Solution Using UV, UV/H2O2, UV/TiO2 and UV/TiO2/H2O2 Processes (2014) International Journal of Engineering Research and Applications, 4 (7), pp. 58-65
dc.relation.referencesWellington, E., Boxall, A., Cross, P., Feil, E., Gaze, W., Hawkey, P., Johnson-Rollings, A., Otten, W., The Role of the Natural Environment in the Emergence of Antibiotic Resistance in Gram-negative Bacteria (2013) The Lancet Infectious Diseases, 13 (2), pp. 155-165
dc.relation.referencesYan, X.W., Li, W., Zou, X., Chen, Y., Huang, X., Miao, W., Zhang, L., Zou, G., (2013) Antibiotics in riverine runoff of the Pearl River Delta and Pearl River Estuary, China: Concentrations, mass loading and ecological risks, , Environmental Pollution, S
dc.relation.referencesYokozeki, S., Modeling of leaching from cementitious materials used in underground environment (2004) Applied Clay Science, 26 (14), pp. 293-308. , K. Watanabe., N. Sakata., and N. Otsuki
dc.relation.referencesYong, E.L., Lin, Y.-P., Incorporation of Initiation, Promotion and Inhibition in the Rct Concept and Its Application in Determining the Initiation and Inhibition Capacities of Natural Water in Ozonation (2012) Water Research, 46 (6), pp. 1990-1998
dc.relation.referencesZhang, H., Xie, H., Chen, J., Zhang, S., Prediction of Hydrolysis Pathways and Kinetics for Antibiotics under Environmental pH Conditions: A Quantum Chemical Study on CepHradine (2015) Environmental Science & Technology, 49 (3), pp. 1552-1558. , xa0
dc.type.coarhttp://purl.org/coar/resource_type/c_dcae04bc
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/review
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record