Show simple item record

dc.contributor.authorNavarro L
dc.contributor.authorCamacho R
dc.contributor.authorLópez J.E
dc.contributor.authorSaldarriaga J.F.
dc.date.accessioned2022-09-14T14:33:29Z
dc.date.available2022-09-14T14:33:29Z
dc.date.created2021
dc.identifier.issn24058440
dc.identifier.urihttp://hdl.handle.net/11407/7391
dc.descriptionAgricultural soils need monitoring systems to address pesticide risks for humans and the environment. The purpose of this paper was to obtain leaching risk maps of the pesticides imidacloprid, lambda-cyhalothrin, and chlorpyrifos in agricultural soil under an onion (Allium cepa L.) crop in Tibasosa, Boyacá, Colombia. This was obtained by studying the soil types in the area, analyzing the behavior of pollutants in the soil profile, using a delay factor and an attenuation factor to finally include GIS allowing visualization of the areas of greater potential risk in the study area. © 2021 The Author(s)eng
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85119037742&doi=10.1016%2fj.heliyon.2021.e08301&partnerID=40&md5=df959bfb57befc75138c73f9bbdc8372
dc.sourceHeliyon
dc.titleAssessment of the potential risk of leaching pesticides in agricultural soils: study case Tibasosa, Boyacá, Colombia
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambiental
dc.type.spaArtículo
dc.identifier.doi10.1016/j.heliyon.2021.e08301
dc.subject.keywordChlorpyrifoseng
dc.subject.keywordImidacloprideng
dc.subject.keywordLambda-cyhalothrineng
dc.subject.keywordLeachingeng
dc.subject.keywordPartition coefficienteng
dc.subject.keywordPotential riskeng
dc.relation.citationvolume7
dc.relation.citationissue11
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationNavarro, L., Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, Bogotá, 111711, Colombia
dc.affiliationCamacho, R., Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, Bogotá, 111711, Colombia, Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
dc.affiliationLópez, J.E., Environmental Engineering Program, Universidad de Medellín, Carrera 87 #30-65, Medellín, 050026, Colombia
dc.affiliationSaldarriaga, J.F., Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, Bogotá, 111711, Colombia
dc.relation.referencesTahat, M.M., Alananbeh, K.M., Othman, Y.A., Leskovar, D.I., Soil health and sustainable agriculture (2020) Sustainability, 12, p. 4859
dc.relation.referencesBozdogan, A.M., Assessment of total risk on non-target organisms in fungicide application for agricultural sustainability (2014) Sustainability, 6, pp. 1046-1058
dc.relation.referencesDar, M.A., Kaushik, G., Villareal Chiu, J.F., Chapter 2 - pollution status and biodegradation of organophosphate pesticides in the environment (2020) Abatement of Environmental Pollutants, pp. 25-66. , P. Singh A. Kumar A. Borthakur Elsevier
dc.relation.referencesWilson, C., Tisdell, C., Why farmers continue to use pesticides despite environmental, health and sustainability costs (2001) Ecol. Econ., 39, pp. 449-462
dc.relation.referencesVerma, P., Verma, P., Sagar, R., Variations in N mineralization and herbaceous species diversity due to sites, seasons, and N treatments in a seasonally dry tropical environment of India (2013) For. Ecol. Manag., 297, pp. 15-26
dc.relation.referencesTilman, D., Cassman, K.G., Matson, P.A., Naylor, R., Polasky, S., Agricultural sustainability and intensive production practices (2002) Nature, 418, pp. 671-677
dc.relation.referencesJavaid, M.K., Ashiq, M., Tahir, M., Potential of biological agents in decontamination of agricultural soil (2016) Scientifica (Cairo), 2016, p. 1598325
dc.relation.referencesEevers, N., White, J.C., Vangronsveld, J., Weyens, N., Chapter seven - bio- and phytoremediation of pesticide-contaminated environments: a review (2017) Advances in Botanical Research, pp. 277-318. , A. Cuypers J. Vangronsveld Academic Press
dc.relation.referencesMahmood, I., Imadi, S.R., Shazadi, K., Gul, A., Hakeem, K.R., Effects of pesticides on environment (2016) Plant, Soil and Microbes: Volume 1: Implications in Crop Science, pp. 253-269. , K.R. Hakeem M.S. Akhtar S.N.A. Abdullah Springer International Publishing Cham
dc.relation.referencesCessna, A.J., Wolf, T.M., Stephenson, G.R., Brown, R.B., Pesticide movement to field margins: routes, impacts and mitigation (2005) Field Bound. Habitats: Implications Weed Insect Dise. Manag., pp. 69-112
dc.relation.referencesReichenberger, S., Bach, M., Skitschak, A., Frede, H.-G., Mitigation strategies to reduce pesticide inputs into ground- and surface water and their effectiveness
dc.relation.referencesA review (2007) Sci. Total Environ., 384, pp. 1-35
dc.relation.referencesSingh, S., Sharma, S., Sarma, S.J., Misra, K., Brar, S.K., Chapter 10 - pesticides in water (2021) Handbook of Water Purity and Quality, pp. 231-253. , S. Ahuja second ed. Academic Press Amsterdam
dc.relation.referencesFarenhorst, A., Importance of soil organic matter fractions in soil-landscape and regional assessments of pesticide sorption and leaching in soil (2006) Soil Sci. Soc. Am. J., 70, pp. 1005-1012
dc.relation.referencesRao, P.S.C., Hornsby, A.G., Jessup, R.E., Indices for Ranking the Potential for Pesticide Contamination of Groundwater (1985)
dc.relation.referencesSpadotto, C.A., Gomes, M.A.F., Hornsby, A.G., Pesticide leaching potential assessment in multilayered soils (2002) Pesticidas: Revista de Ecotoxicologia e Meio Ambiente, 12
dc.relation.referencesZapata-Sarmiento, D.H., Palacios-Pala, E.F., Rodríguez-Hernández, A.A., Medina Melchor, D.L., Rodríguez-Monroy, M., Sepúlveda-Jiménez, G., Trichoderma asperellum, a potential biological control agent of Stemphylium vesicarium, on onion (Allium cepa L.) (2020) Biol. Contr., 140, p. 104105
dc.relation.referencesZangina, U., Buyamin, S., Aman, M.N., Abidin, M.S.Z., Mahmud, M.S.A., A greedy approach to improve pesticide application for precision agriculture using model predictive control (2021) Comput. Electron. Agric., 182, p. 105984
dc.relation.referencesVerma, J.P., Jaiswal, D.K., Sagar, R., Pesticide relevance and their microbial degradation: a-state-of-art (2014) Rev. Environ. Sci. Biotechnol., 13, pp. 429-466
dc.relation.referencesBunbury-Blanchette, A.L., Walker, A.K., Trichoderma species show biocontrol potential in dual culture and greenhouse bioassays against Fusarium basal rot of onion (2019) Biol. Contr., 130, pp. 127-135
dc.relation.referenceshttps://www.atlasbig.com/en-us/countries-onion-production, World's Top Onion Producing Countries, AtlasBig. (n.d.). (accessed April 28, 2021)
dc.relation.referencesAdeoti, O., Oyedele, O.A., Yusuf, A., The water footprint of dry onion production in Nigeria (2021) Water Res. Industr., 25, p. 100147
dc.relation.referencesGordon, T.R., Martyn, R.D., The evolutionary biology of Fusarium oxysporum (1997) Annu. Rev. Phytopathol., 35, pp. 111-128
dc.relation.referencesAbawi, G.S., Lorbeer, J.W., Several aspects of the ecology and pathology of Fusarium oxysporum f. sp. cepae (1972) Phytopathology, , https://agris.fao.org/agris-search/search.do?recordID=US201302317491, (Accessed 8 May 2021)
dc.relation.referencesMartı́nez-Toledo, M.V., Salmerón, V., Rodelas, B., Pozo, C., González-López, J., Effects of the fungicide Captain on some functional groups of soil microflora (1998) Appl. Soil Ecol., 7, pp. 245-255
dc.relation.referencesJones, H.A., Mann, L.K., Onions and Their Allies: Botany, Cultivation, and Utilization (1963), L. Hill
dc.relation.referencesUniversidad Pedagógica y Tecnológica de Colombia, Mapa Semidetallado de Suelos Sulfatados Ácidos del Distrito de Riego del Alto Chicamocha (2014)
dc.relation.references(2019) Caracterización de la problemática de los suelos sulfatados ácidos improductivos y evaluación del manejo para su habilitación agrícola. Distrito de Riego del Alto Chicamocha-Boyacá, Proyecto UPTC-Colciencias-Usochicamocha, 220. , Chicamocha-Boyacá
dc.relation.referencesMinagricultura, T., Boyacá, (2013), http://bibliotecadigital.agronet.gov.co/bitstream/11438/7546/1/SIG-MUNICIPALES/TIBASOSA_BOYAC%C3%81.pdf, (Accessed 8 May 2021)
dc.relation.referencesNIST, Cyhalothrin K Critically Evaluated Thermophysical Property Data from NIST/TRC Web Thermo Tables (2012), https://wtt-pro.nist.gov/wtt-pro/index.html?cmp=cyhalothrin_k, WTT (Accessed 8 May 2021)
dc.relation.referencesImidacloprid Critically Evaluated Thermophysical Property Data from NIST/TRC Web Thermo Tables (2012), https://wtt-pro.nist.gov/wtt-pro/index.html?cmp=imidacloprid, WTT (Accessed 8 May 2021)
dc.relation.referencesNIST, O,O-diethyl O-3,5,6-Trichloro-2-Pyridyl Phosphorothioate Critically Evaluated Thermophysical Property Data from NIST/TRC Web Thermo Tables (2012), https://wtt-pro.nist.gov/wtt-pro/index.html?cmp=o.o-diethyl_o-3.5.6-trichloro-2-pyridyl_phosphorothioate, WTT (Accessed 8 May 2021)
dc.relation.referencesLewis, K.A., Tzilivakis, J., Warner, D.J., Green, A., An international database for pesticide risk assessments and management (2016) Human Ecol. Risk Assess.: Int. J., 22, pp. 1050-1064
dc.relation.referenceshttps://pubchem.ncbi.nlm.nih.gov/, PubChem, PubChem, Explore Chemistry. (n.d.). (accessed August 23, 2021)
dc.relation.referencesKookana, R.S., Correll, R.L., Miller, R.B., Pesticide impact rating index – a pesticide risk indicator for water quality (2005) Water Air Soil Pollut. Focus, 5, pp. 45-65
dc.relation.referencesKhan, M.A., Liang, T., Mapping pesticide contamination potential (1989) Environ. Manag., 13, pp. 233-242
dc.relation.referencesBedmar, F., Riesgo de contaminación del agua subterránea con plaguicidas en la Cuenca del Arroyo El Cardalito, Argentina (2015) Revista de Investigaciones Agropecuarias, 41, p. 6
dc.relation.referencesGarcía Tovar, R.A., García García, J.A., Solano Sarmiento, V.A., Estimación de la vulnerabilidad intrínseca del acuífero de la Formación Mesa presente en el municipio de Puerto Boyacá del departamento de Boyacá, Colombia, mediante la metodología DRASTIC (2016), https://repository.ucatolica.edu.co/handle/10983/13977, (Accessed 8 May 2021)
dc.relation.referencesBirolli, W.G., Arai, M.S., Nitschke, M., Porto, A.L.M., The pyrethroid (±)-lambda-cyhalothrin enantioselective biodegradation by a bacterial consortium (2019) Pestic. Biochem. Physiol., 156, pp. 129-137
dc.relation.referencesFewson, C.A., Biodegradation of xenobiotic and other persistent compounds: the causes of recalcitrance (1988) Trends Biotechnol., 6, pp. 148-153
dc.relation.referencesPatil, P.D., Singh, A.A., Yadav, G.D., Biodegradation of organophosphorus insecticide chlorpyrifos into a major fuel additive 2,4-bis(1,1 dimethylethyl) phenol using white-rot fungal strain Trametes hirsuta MTCC-1171 (2021) J. Indian Chem. Soc., 98, p. 100120
dc.relation.referencesDamalas, C.A., Koutroubas, S.D., Farmers’ exposure to pesticides: toxicity types and ways of prevention (2016) Toxics, 4, p. 1
dc.relation.referencesGeorghiou, G.P., Mellon, R.B., Pesticide resistance in time and space (1983) Pest Resistance to Pesticides, pp. 1-46. , G.P. Georghiou T. Saito Springer US Boston, MA
dc.relation.referencesMarrugo-Negrete, J.L., Navarro-Frómeta, A.E., Urango-Cardenas, I.D., Organochlorine pesticides in soils from the middle and lower Sinú river basin (Córdoba, Colombia) (2014) Water Air Soil Pollut., 225, p. 2053
dc.relation.referencesArias, L.A., Garzón, A., Ayarza, A., Aux, S., Bojacá, C.R., Environmental fate of pesticides in open field and greenhouse tomato production regions from Colombia (2021) Environ. Adv., 3, p. 100031
dc.relation.referencesZuluaga, S.C., Contreras, C.D.R., Ramírez, J.C.T., Valderrama, J.F.N., Córdoba, C.L., Pérez, F.J.M., Potential de lixiviación del Clorpirifos en un Entisol colombiano (2018) Revista EIA, 15, pp. 47-58
dc.relation.referencesMojica, A., Guerrero, J.A., Evaluación del movimiento de plaguicidas hacia la cuenca del lago de tota, Colombia (2013) Rev. Colomb. Quím., 42, pp. 29-38
dc.relation.referencesRen, X., Zeng, G., Tang, L., Wang, J., Wan, J., Liu, Y., Yu, J., Deng, R., Sorption, transport and biodegradation – an insight into bioavailability of persistent organic pollutants in soil (2018) Sci. Total Environ., 610-611, pp. 1154-1163
dc.relation.referencesButkovskyi, A., Jing, Y., Bergheim, H., Lazar, D., Gulyaeva, K., Odenmarck, S.R., Norli, H.R., Eggen, T., Retention and distribution of pesticides in planted filter microcosms designed for treatment of agricultural surface runoff (2021) Sci. Total Environ., 778, p. 146114
dc.relation.referencesHe, L.-M., Troiano, J., Wang, A., Goh, K., Environmental chemistry, ecotoxicity, and fate of lambda-cyhalothrin (2008) Reviews of Environmental Contamination and Toxicology, pp. 71-91. , D.M. Whitacre Springer New York, NY
dc.relation.referencesChai, L.-K., Wong, M.-H., Bruun Hansen, H.C., Degradation of chlorpyrifos in humid tropical soils (2013) J. Environ. Manag., 125, pp. 28-32
dc.relation.referencesChu, X., Fang, H., Pan, X., Wang, X., Shan, M., Feng, B., Yu, Y., Degradation of chlorpyrifos alone and in combination with chlorothalonil and their effects on soil microbial populations (2008) J. Environ. Sci., 20, pp. 464-469
dc.relation.referencesFang, H., Yu, Y., Chu, X., Wang, X., Yang, X., Yu, J., Degradation of chlorpyrifos in laboratory soil and its impact on soil microbial functional diversity (2009) J. Environ. Sci., 21, pp. 380-386
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record