Show simple item record

dc.contributor.authorLondoño-Pineda A.A
dc.contributor.authorCano J.A.
dc.date.accessioned2022-09-14T14:33:29Z
dc.date.available2022-09-14T14:33:29Z
dc.date.created2022
dc.identifier.issn22558837
dc.identifier.urihttp://hdl.handle.net/11407/7392
dc.descriptionThe United Nations announced its 2030 Agenda for Sustainable Development worldwide in 2015. Comprehensive assessments of member states' performance towards achieving the related UN Sustainable Development Goals (SDGs) have since become a major challenge for national and subnational governments. This article presents a bibliometric analysis on the assessment of SDGs, at both the general and specific levels, based on 418 publications obtained from Scopus. The general level of analysis includes the number, types, and subject areas of documents published each year, as well as considerations such as the most-cited publications and the leading authors, journals, countries, institutional affiliations, and funders. The specific level of analysis includes a study of the relevant concepts in the publications and their relationships, allowing for the identification of predominant assessments under the 2030 Agenda, and of the most-often evaluated SDGs. Results indicated a focus on measuring impacts and risks, with SDGs 3, 6, 13, 7, 8, and 4 having been assessed the most often among the 17 SDGs, which is consistent with findings in prevalent subject areas such as environmental sciences, social sciences, medicine, and energy. Future works should address assessments under the 2030 Agenda more comprehensively, including analyses on trade-offs among the SDGs and on the transversal nature of some of these goals. © 2022 Abraham Allec Londoño-Pineda et al., published by Sciendo.eng
dc.language.isoeng
dc.publisherSciendo
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85127928897&doi=10.2478%2frtuect-2022-0014&partnerID=40&md5=958f524c4339cbf6a43e4277ee46033d
dc.sourceEnvironmental and Climate Technologies
dc.titleAssessments under the United Nations Sustainable Development Goals: A Bibliometric Analysis
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programAdministración de Empresas
dc.publisher.programNegocios Internacionales
dc.type.spaArtículo
dc.identifier.doi10.2478/rtuect-2022-0014
dc.subject.keyword2030 agendaeng
dc.subject.keywordAppraisaleng
dc.subject.keywordAssessmenteng
dc.subject.keywordEvaluationeng
dc.subject.keywordSustainable development goalseng
dc.subject.keywordUnited Nationseng
dc.relation.citationvolume26
dc.relation.citationissue1
dc.relation.citationstartpage166
dc.relation.citationendpage181
dc.publisher.facultyFacultad de Ciencias Económicas y Administrativas
dc.affiliationLondoño-Pineda, A.A., Universidad de Medellín, Cra. 87 #30-65, Medellin, Colombia
dc.affiliationCano, J.A., Universidad de Medellín, Cra. 87 #30-65, Medellin, Colombia
dc.relation.referencesSrivastava, A., Standardizing evaluation process: Necessary for achieving SDGs-A case study of India (2018) Eval. Program Plann, 69, pp. 118-124. , https://doi.org/10.1016/j.evalprogplan.2018.05.001
dc.relation.referencesBanerjee, O., Cicowiez, M., Horridge, M., Vargas, R., Evaluating synergies and trade-offs in achieving the SDGs of zero hunger and clean water and sanitation: An application of the IEEM Platform to Guatemala (2019) Ecol. Econ, 161, pp. 280-291. , https://doi.org/10.1016/j.ecolecon.2019.04.003
dc.relation.referencesPhillips, J., The application of the Geocybernetic Assessment Matrix to the un 2030 Sustainable Development Goals (2020) Environ. Dev. Sustain, 23, pp. 7550-7572. , https://doi.org/10.1007/s10668-020-00932-6
dc.relation.referencesLondoño, A., Cruz, J.G., Evaluation of sustainable development in the sub-regions of Antioquia (Colombia) using multicriteria composite indices: A tool for prioritizing public investment at the subnational level (2019) Environ. Dev, 32, p. 100442. , https://doi.org/10.1016/j.envdev.2019.05.001
dc.relation.referencesEl-Maghrabi, M.H., Gable, S., Osorio-Rodarte, I., Verbeek, J., (2018) Sustainable Development Goals Diagnostics: An Application of Network Theory and Complexity Measures to Set Country Priorities, , https://doi.org/10.1596/1813-9450-8481, Working Paper
dc.relation.referencesNo. 8481. World Bank
dc.relation.referencesSchmidt-Traub, G., Kroll, C., Teksoz, K., Durand-Delacre, D., Sachs, J.D., National baselines for the Sustainable Development Goals assessed in the SDG Index and Dashboards (2017) Nat. Geosci, 10 (8), pp. 547-555. , https://doi.org/10.1038/ngeo2985
dc.relation.referencesAllen, C., Reid, M., Thwaites, J., Glover, R., Kestin, T., Assessing national progress and priorities for the Sustainable Development Goals (SDGs): Experience from Australia (2020) Sustain. Sci, 15 (2), pp. 521-538. , https://doi.org/10.1007/s11625-019-00711-x
dc.relation.referencesSchuschny, A., Soto, H., (2009) Guía Metodológica: Diseño de Indicadores Compuestos de Desarrollo Sostenible. (Methodological Guide: Design of Composite Indicators of Sustainable Development), , Santiago de Chile: Naciones Unidas. CEPAL
dc.relation.referencesLondoño, A., (2018) Metodología y Evaluación Del Desarrollo Sostenible de Las Subregiones Que Integran El Departamento de Antioquia (Colombia) Bajo un Enfoque Sistémico Inter-temático y Multicriterio (Methodology and Evaluation of the Sustainable Development of the Subregions That Make Up the Department of Antioquia (Colombia), under An Inter-thematic and Multi-criteria Systemic Approach), , Universidad de Manizales
dc.relation.referencesAbou-Ali, H., Abdelfattah, Y.M., Integrated paradigm for sustainable development: A panel data study (2013) Econ. Model, 30 (1), pp. 334-342. , https://doi.org/10.1016/j.econmod.2012.09.016
dc.relation.referencesGiddings, B., Hopwood, B., O'Brien, G., Environment, economy and society: Fitting them together into sustainable development (2002) Sustain. Dev, 10 (4), pp. 187-196. , https://doi.org/10.1002/sd.199
dc.relation.referencesHolden, E., Linnerud, K., Banister, D., Sustainable development: Our Common Future revisited (2014) Glob. Environ. Chang, 26 (1), pp. 130-139. , https://doi.org/10.1016/j.gloenvcha.2014.04.006
dc.relation.referencesBiggeri, M., Clark, D.A., Ferrannini, A., Mauro, V., Tracking the SDGs in an 'integrated' manner: A proposal for a new index to capture synergies and trade-offs between and within goals (2019) World Dev, 122, pp. 628-647. , https://doi.org/10.1016/j.worlddev.2019.05.022
dc.relation.referencesAli-Toudert, F., Ji, L., Modeling and measuring urban sustainability in multi-criteria based systems-A challenging issue (2017) Ecol. Indic, 73, pp. 597-611. , https://doi.org/10.1016/j.ecolind.2016.09.046
dc.relation.referencesSepúlveda, S., (2008) Metodología Para Estimar El Nivel de Desarrollo Sostenible de Territorios: Biograma 2008. (Methodology to Estimate the Level of Sustainable Development of Territories: Biograma 2008), , San José, Costa Rica: Instituto Interamericano de Cooperación para la Agricultura IICA
dc.relation.referencesMiola, A., Schiltz, F., Measuring sustainable development goals performance: How to monitor policy action in the 2030 Agenda implementation? (2019) Ecol. Econ, 164, p. 106373. , https://doi.org/10.1016/j.ecolecon.2019.106373
dc.relation.referencesHickel, J., The sustainable development index: Measuring the ecological efficiency of human development in the anthropocene (2020) Ecol. Econ, 167, p. 106331. , https://doi.org/10.1016/j.ecolecon.2019.05.011
dc.relation.referencesDa Silva, J., Fernandes, V., Limont, M., Rauen, W., Sustainable development assessment from a capitals perspective: Analytical structure and indicator selection criteria (2020) J. Environ. Manage, 260, p. 110147. , https://doi.org/10.1016/j.jenvman.2020.110147
dc.relation.referencesAmbrogui, R., (2017) Desarrollo Sostenible: Concepto y Evolución Del Paradigma. (Sustainable Development: Concept and Paradigm Evolution), 5 (9), pp. 110-125. , https://doi.org/10.5377/reice.v5i9.4366
dc.relation.referencesHansson, S.O., Technology and the notion of sustainability (2010) Technol. Soc, 32 (4), pp. 274-279. , https://doi.org/10.1016/j.techsoc.2010.10.003
dc.relation.referencesÁlvarez-Hincapié, C.F., Capital natural crítico y función de hábitat como aproximación a la complejidad ambiental. (Critical natural capital and habitat function as an approach to environmental complexity) (2010) Rev. Lasallista Investig, 7 (2), pp. 132-149
dc.relation.referencesGallopín, G., (2006) Los Indicadores de Desarrollo Sostenible: Aspectos Conceptuales y Metodológicos, , Indicators of sustainable development: Conceptual and methodological aspects
dc.relation.referencesVon Stechow, C., 2 °c and SDGs: United they stand, divided they fall? (2016) Environ. Res. Lett, 11 (3), p. 034022. , https://doi.org/10.1088/1748-9326/11/3/034022
dc.relation.referencesZhi, L., Pyrolyzed biowastes deactivated potentially toxic metals and eliminated antibiotic resistant genes for healthy vegetable production (2020) J. Clean. Prod, 276, p. 124208. , https://doi.org/10.1016/j.jclepro.2020.124208
dc.relation.referencesKok, B., Fish as feed: Using economic allocation to quantify the Fish In: Fish Out ratio of major fed aquaculture species (2020) Aquaculture, 528, p. 735474. , https://doi.org/10.1016/j.aquaculture.2020.735474
dc.relation.referencesAhner-McHaffie, T.W., Guest, G., Petruney, T., Eterno, A., Dooley, B., Evaluating the impact of integrated development: Are we asking the right questions? A systematic review (2018) Gates Open Res, pp. 1-6. , https://doi.org/10.12688/gatesopenres.12755.2
dc.relation.referencesAsi, Y.M., Williams, C., The role of digital health in making progress toward Sustainable Development Goal (SDG) 3 in conflict-affected populations (2018) Int. J. Med. Inform, 114, pp. 114-120. , https://doi.org/10.1016/j.ijmedinf.2017.11.003
dc.relation.referencesVanham, D., Physical water scarcity metrics for monitoring progress towards SDG target 6.4: An evaluation of indicator 6.4.2, Level of water stress (2018) Sci. Total Environ, 613-614, pp. 218-232. , https://doi.org/10.1016/j.scitotenv.2017.09.056
dc.relation.referencesNam Chol, O., Kim, H., Towards the 2 °c goal: Achieving Sustainable Development Goal (SDG) 7 in DPR Korea,' Resour (2019) Conserv. Recycl, 150, p. 104412. , https://doi.org/10.1016/j.resconrec.2019.104412
dc.relation.referencesGennari, P., D'Orazio, M., A statistical approach for assessing progress towards the SDG targets (2020) Stat. J. Iaos, 36, pp. 1129-1142. , https://doi.org/10.3233/SJI-200688
dc.relation.referencesEl Mohadab, M., Bouikhalene, B., Safi, S., Bibliometric method for mapping the state of the art of scientific production in Covid-19 (2020) Chaos, Solitons and Fractals, 139, p. 110052. , https://doi.org/10.1016/j.chaos.2020.110052
dc.relation.referencesBrooks, T.M., Harnessing biodiversity and conservation knowledge products to track the Aichi Targets and Sustainable Development Goals (2015) Biodiversity, 16 (2-3), pp. 157-174. , https://doi.org/10.1080/14888386.2015.1075903
dc.relation.referencesMeuleman, L., Niestroy, I., Common but Differentiated Governance: A Metagovernance Approach to Make the SDGs Work (2015) Sustainability, 7 (9), pp. 12295-12321. , https://doi.org/10.3390/su70912295
dc.relation.references(2019) Global Sustainable Development Report: The Future Is Now-Science for Achieving Sustainable Development, , United Nations, New York: United Nations
dc.relation.referencesOmisore, A.G., Attaining Sustainable Development Goals in sub-Saharan Africa
dc.relation.referencesThe need to address environmental challenges (2018) Environ. Dev, 25, pp. 138-145. , https://doi.org/10.1016/j.envdev.2017.09.002
dc.relation.referencesWiedmann, T., Lenzen, M., Environmental and social footprints of international trade (2018) Nat. Geosci, 11 (5), pp. 314-321. , https://doi.org/10.1038/s41561-018-0113-9
dc.relation.referencesWatts, N., The Lancet Countdown: Tracking progress on health and climate change (2017) Lancet, 389, pp. 1151-1164. , https://doi.org/10.1016/S0140-6736(16)32124-9, 10074
dc.relation.referencesXue, L., Missing Food, Missing Data? A Critical Review of Global Food Losses and Food Waste Data (2017) Environ. Sci. Technol, 51 (12), pp. 6618-6633. , https://doi.org/10.1021/acs.est.7b00401
dc.relation.referencesLozano, R., Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: A systematic analysis for the Global Burden of Disease Study 2017 (2018) Lancet, 392, pp. 2091-2138. , https://doi.org/10.1016/S0140-6736(18)32281-5, 10159
dc.relation.referencesMcCollum, D.L., Connecting the sustainable development goals by their energy inter-linkages (2018) Environ. Res. Lett, 13, p. 033006. , https://doi.org/10.1088/1748-9326/aaafe3
dc.relation.referencesNiessen, L.W., Tackling socioeconomic inequalities and non-communicable diseases in low-income and middleincome countries under the sustainable development agenda (2018) Lancet, 391, pp. 2036-2046. , https://doi.org/10.1016/S0140-6736(18)30482-3, 10134
dc.relation.referencesSpangenberg, J.H., Hot air or comprehensive progress? A critical assessment of the SDGs (2017) Sustain. Dev, 25 (4), pp. 311-321. , https://doi.org/10.1002/sd.1657
dc.relation.referencesMills, G., Ozone pollution will compromise efforts to increase global wheat production (2018) Glob. Chang. Biol, 24 (8), pp. 3560-3574. , https://doi.org/10.1111/gcb.14157
dc.relation.referencesMancini, L., Sala, S., Social impact assessment in the mining sector: Review and comparison of indicators frameworks (2018) Resour. Policy, 57, pp. 98-111. , https://doi.org/10.1016/j.resourpol.2018.02.002
dc.relation.referencesDelanka-Pedige, H.M.K., Munasinghe-Arachchige, S.P., Abeysiriwardana-Arachchige, I.S.A., Nirmalakhandan, N., Wastewater infrastructure for sustainable cities: Assessment based on un sustainable development goals (SDGs) (2020) Int. J. Sustain. Dev. World Ecol, 28 (3), pp. 203-209. , https://doi.org/10.1080/13504509.2020.1795006
dc.relation.referencesDelanka-Pedige, H.M.K., Munasinghe-Arachchige, S.P., Isuru, S.A., Zhang, Y., Nirmalakhandan, N., Algal pathway towards meeting United Nation's sustainable development goal 6 (2020) Int. J. Sustain. Dev. World Ecol, 27 (8), pp. 678-686. , https://doi.org/10.1080/13504509.2020.1756977
dc.relation.referencesMunasinghe-Arachchige, S.P., Abeysiriwardana-Arachchige, I.S.A., Delanka-Pedige, H.M.K., Nirmalakhandan, N., Sewage treatment process refinement and intensification using multi-criteria decision making approach: A case study (2020) J. Water Process Eng, 37, p. 101485. , https://doi.org/10.1016/j.jwpe.2020.101485
dc.relation.referencesChen, J., Zhou, D., Zhao, Y., Wu, B., Wu, T., Life cycle carbon dioxide emissions of bike sharing in China: Production, operation, and recycling (2020) Resour. Conserv. Recycl, 162, p. 105011. , https://doi.org/10.1016/j.resconrec.2020.105011
dc.relation.referencesJolliet, O., Global guidance on environmental life cycle impact assessment indicators: Impacts of climate change, fine particulate matter formation, water consumption and land use (2018) Int. J. Life Cycle Assess, 23, pp. 2189-2207. , https://doi.org/10.1007/s11367-018-1443-y
dc.relation.referencesTrinder, J., Liu, Q., Assessing environmental impacts of urban growth using remote sensing (2020) Geo-Spatial Inf. Sci, 23 (1), pp. 20-39. , https://doi.org/10.1080/10095020.2019.1710438
dc.relation.referencesWard, J.S.T., Large-scale survey of seasonal drinking water quality in Malawi using in situ tryptophan-like fluorescence and conventional water quality indicators (2020) Sci. Total Environ, 744, p. 140674. , https://doi.org/10.1016/j.scitotenv.2020.140674
dc.relation.referencesSogbanmu, T.O., Aitsegame, S.O., Otubanjo, O.A., Odiyo, J.O., Drinking water quality and human health risk evaluations in rural and urban areas of Ibeju-Lekki and Epe local government areas, Lagos, Nigeria (2020) Hum. Ecol. Risk Assess. An Int. J, 26 (4), pp. 1062-1075. , https://doi.org/10.1080/10807039.2018.1554428
dc.relation.referencesLeung, K.M.Y., Toward Sustainable Environmental Quality: Priority Research Questions for Asia (2020) Environ. Toxicol. Chem, 39 (8), pp. 1485-1505. , https://doi.org/10.1002/etc.4788
dc.relation.referencesGupta, R., Wood, D.A., Primary prevention of ischaemic heart disease: Populations, individuals, and health professionals (2019) Lancet, 394, pp. 685-696. , https://doi.org/10.1016/S0140-6736(19)31893-8, 10199
dc.relation.referencesRao, C., Elements of a strategic approach for strengthening national mortality statistics programmes (2019) Bmj Glob. Heal, 4 (5), p. e001810. , https://doi.org/10.1136/bmjgh-2019-001810
dc.relation.referencesRidoutt, B.G., Hendrie, G.A., Noakes, M., Dietary strategies to reduce environmental impact: A critical review of the evidence (2017) Adv. Nutr, 8 (6), pp. 933-946. , https://doi.org/10.3945/an.117.016691
dc.relation.referencesMiller, V., Webb, P., Micha, R., Mozaffarian, D., Defining diet quality: A synthesis of dietary quality metrics and their validity for the double burden of malnutrition (2020) Lancet Planet. Heal, 4 (8), pp. e352-e370. , https://doi.org/10.1016/S2542-5196(20)30162-5
dc.relation.referencesAcheampong, M., Is Ghana Ready to Attain Sustainable Development Goal (SDG) Number 7 ? A Comprehensive Assessment of Its Renewable Energy Potential and Pitfalls (2019) Energies, 12 (3), p. 408. , https://doi.org/10.3390/en12030408
dc.relation.referencesGeorgeson, L., Maslin, M., Putting the United Nations Sustainable Development Goals into practice: A review of implementation, monitoring, and finance (2018) Geo Geogr. Environ, 5 (1), pp. 1-25. , https://doi.org/10.1002/geo2.49
dc.relation.referencesIancu, D., Ionescu, G.H., Jianu, E., Patrichi, I.C., Ghiocel, F., Lili, T., Assessment of Sustainable Development Goals (SDG) Implementation in Bulgaria and Future Developments (2021) Sustainability, 13 (21), p. 12000. , https://doi.org/10.3390/su132112000
dc.relation.referencesBenedek, J., Holobâc, I., Ivan, K., Temerdek, A., Indicator-based assessment of local and regional progress toward the Sustainable Development Goals (SDGs): An integrated approach from Romania (2021) Sustain. Dev, 29 (5), pp. 860-875. , https://doi.org/10.1002/sd.2180
dc.relation.referencesLondoño-Pineda, A., Cano, J.A., Gómez-Montoya, R., Application of AHP for the Weighting of Sustainable Development Indicators at the Subnational Level (2021) Economies, 9 (4), p. 169. , https://doi.org/10.3390/economies9040169
dc.relation.referencesLondoño, A., Cano, J.A., Czerny, M., Governance approach to the prioritization of sustainable development goals in the city of Medellin (Colombia) (2021) Urbe, 13, pp. 1-16. , https://doi.org/10.1590/2175-3369.013.e20200288, e20200288
dc.relation.referencesSachs, J., Schmidt-Traub, G., Kroll, C., Lafortune, G., Fuller, G., (2019) Sustainable Development Report 2019: Transformations to Achieve the Sustainable Development Goals, , https://www.bertelsmannstiftung.de/en/publications/publication/did/sustainable-development-report-2019, New York
dc.relation.references(2019) Measuring Distance to the Sdg Targets 2019: An Assessment of Where Oecd Countries Stand, , https://www.oecd.org/wise/measuring-distance-to-the-sdg-targets-2019-a8caf3fa-en.htm, OECD, Paris
dc.relation.references(2021) Sustainable Development in the European Union: Monitoring Report on Progress Towards the SDGs in An Eu Context (2021 Edition), , Eurostat, Luxembourg
dc.relation.references(2021) The Sustainable Development Goals Report, , https://unstats.un.org/sdgs/report/2021/, UN, New York
dc.relation.references(2021) Sustainable Development Goals Progress Chart 2021, , https://unstats.un.org/sdgs/report/2021/progress-chart-2021.pdf
dc.relation.referencesHolden, E., Linnerud, K., Banister, D., Schwanitz, V., Wierling, A., (2018) The Imperatives of Sustainable Development: Needs, Justice, Limits, , New York, NY: Roudledge
dc.relation.referencesMaso, M.D., Olsen, K.H., Dong, Y., Pedersen, M.B., Sustainable development impacts of nationally determined contributions: Assessing the case of mini-grids in Kenya (2020) Clim. Policy, 20 (7), pp. 815-883. , https://doi.org/10.1080/14693062.2019.1644987
dc.relation.referencesMarcinko, C.L.J., The Development of a Framework for the Integrated Assessment of SDG Trade-Offs in the Sundarban Biosphere Reserve (2021) Water, 13 (4), p. 528. , https://doi.org/10.3390/w13040528
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record