Mostrar el registro sencillo del ítem

dc.contributor.authorValencia G.M
dc.contributor.authorAnaya J.A
dc.contributor.authorCaro-Lopera F.J.
dc.date.accessioned2022-09-14T14:33:29Z
dc.date.available2022-09-14T14:33:29Z
dc.date.created2022
dc.identifier.issn11330953
dc.identifier.urihttp://hdl.handle.net/11407/7401
dc.descriptionBiomass burning is an important source of greenhouse gases (GHG) and air pollutants (AP) in developing countries. In this research, a bottom-up method was implemented for the estimation of emissions, emphasizing the validation process of aerial biomass products (AGB), which it has not been sufficiently approached from the point of view of the quantification of emissions. The most recent results on the validation of burned area (AQ) products and the analysis of uncertainty were also incorporated into the process of estimating the emissions of gases that directly or indirectly promote the greenhouse effect, such as CO2, NO2, CO, NH3, and Black Carbon (BC). In total, 87.60 Mha were burned in the region between 2001 and 2016, represented in a 57% by pasture lands a 23% by savannas, an 8% by savanna woodlands, an 8% by mixed soils with crops and natural vegetation, a 3% by evergreen broadleaf forests, and a 1 % in the region´s remaining types of land cover. With 35480 reference polygons, a model based on the uncertainty of AQ was generated, which served to find the calibration factor of the FireCCI5.0 in all the studied species. The total emissions (minimum and maximum) and the average of the same in the study period were the following: 1760 Tg CO2 (765.07-2552.88; average 110 Tg), 68.12 Tg of CO (27.11-98.87; average 4.26 Tg), 3.05 Tg of NO2 (1.27-4.40; average 0.19 Tg), 0.76 Tg of NH3 (0.33-1.12; average 0.05 Tg), and 0.44 Tg of Black Carbon (0.015-0.64; average 0.03 Tg). © 2022, Universidad Politecnica de Valencia.. All rights reserved.eng
dc.language.isospa
dc.publisherUniversidad Politecnica de Valencia.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85124594419&doi=10.4995%2fraet.2022.15594&partnerID=40&md5=1efef4cd24835679f2c7f7f135768d73
dc.sourceRevista de Teledeteccion
dc.titleBottom-up estimates of atmospheric emissions of CO2, NO2, CO, NH3, and Black Carbon, generated by biomass burning in the north of South America [Estimación de emisiones atmosféricas de CO2, NO2, CO, NH3 y Black Carbon vía bottom up, generados por quema de biomasa en el norte de América del Sur]
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambiental
dc.publisher.programCiencias Básicas
dc.type.spaArtículo
dc.identifier.doi10.4995/raet.2022.15594
dc.subject.keywordAboveground biomass validationeng
dc.subject.keywordAtmospheric emissionseng
dc.subject.keywordAtmospheric pollutantseng
dc.subject.keywordBottom-upeng
dc.subject.keywordBurned areaeng
dc.subject.keywordGreenhouse gaseseng
dc.subject.keywordUncertaintyeng
dc.relation.citationvolume2022
dc.relation.citationissue59
dc.relation.citationstartpage23
dc.relation.citationendpage47
dc.publisher.facultyFacultad de Ingenierías
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationValencia, G.M., Facultad de Ingenierías, Universidad de San Buenaventura, Carrera 56C Nro. 51-90, Medellín, Colombia, Facultad de Ingenierías, Universidad de Medellín, Carrera 87 Nro. 30-65, Medellín, Colombia
dc.affiliationAnaya, J.A., Facultad de Ingenierías, Universidad de Medellín, Carrera 87 Nro. 30-65, Medellín, Colombia
dc.affiliationCaro-Lopera, F.J., Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 Nro. 30-65, Medellín, Colombia
dc.relation.referencesAbril-Salcedo, D. S., Melo-Velandia, L. F., Parra-Amado, D., Nonlinear relationship between the weather phenomenon El niño and Colombian food prices (2020) Australian Journal of Agricultural and Resource Economics, 64 (4), pp. 1059-1086. , https://doi.org/10.1111/1467-8489.12394
dc.relation.referencesAkagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Wennberg, P. O., Emission factors for open and domestic biomass burning for use in atmospheric models (2011) Atmospheric Chemistry and Physics, 11 (9), pp. 4039-4072. , https://doi.org/10.5194/acp-11-4039-2011
dc.relation.referencesAnaya, J. A., Chuvieco, E., Accuracy assessment of burned area products in the Orinoco basin (2010) American Society for Photogrammetry and Remote Sensing Annual Conference 2010: Opportunities for Emerging Geospatial Technologies, 1 (1), pp. 8-17
dc.relation.referencesAnaya, J. A., Chuvieco, E., Palacios-Orueta, A., Aboveground biomass assessment in Colombia: A remote sensing approach (2009) Forest Ecology and Management, 257 (4), pp. 1237-1246. , https://doi.org/10.1016/j.foreco.2008.11.016
dc.relation.referencesAnaya, J. A., Colditz, R. R., Valencia, G., Land Cover Mapping of a Tropical Region by Integrating Multi-Year Data into an Annual Time Series (2015) Remote Sensing, 7 (12), pp. 16274-16292. , https://doi.org/10.3390/rs71215833
dc.relation.referencesAnderson, B. E., Grant, W. B., Gregory, G. L., Browell, E. V., Collins, J. E., Sachse, G. W., Blake, N. J., Aerosols from biomass burning over the tropical South Atlantic region: Distributions and impacts (1996) Journal of Geophysical Research: Atmospheres, 101 (D19), pp. 24117-24137. , https://doi.org/10.1029/96JD00717
dc.relation.referencesAndreae, M., (1991) Biomass burning: its history, use, and distribution and its impact on environmental quality and global climate, pp. 3-21. , J. Levine (Ed), MIT Press –). Cambridge
dc.relation.referencesAndreae, M. O., Merlet, P., Emission of trace gases and aerosols from biomass burning (2001) Global Biogeochemical Cycles, 15 (4), pp. 955-966. , https://doi.org/10.1029/2000GB001382
dc.relation.referencesAvitabile, V., Herold, M., Heuvelink, G. B. M., Lewis, S. L., Phillips, O. L., Asner, G. P., Willcock, S., An integrated pan-tropical biomass map using multiple reference datasets (2016) Global Change Biology, 22 (4), pp. 1406-1420. , https://doi.org/10.1111/gcb.13139
dc.relation.referencesAvitabile, V., Camia, A., An assessment of forest biomass maps in Europe using harmonized national statistics and inventory plots (2018) Forest Ecology and Management, 409, pp. 489-498. , https://doi.org/10.1016/j.foreco.2017.11.047, (November 2017)
dc.relation.referencesBaccini, a., Goetz, S. J., Walker, W. S., Laporte, N. T., Sun, M., Sulla-Menashe, D., Houghton, R. a., Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps (2012) Nature Clim. Change, 2 (3), pp. 182-185. , https://doi.org/10.1038/nclimate1354
dc.relation.referencesBaede, A., van der Linden, P., Verbruggen, A., Annex to IPCC Fourth Assessment Report (2007) IPCC Fourth Assessment Report, pp. 75-104. , https://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr_appendix.pdf, Retrieved from
dc.relation.referencesBastarrika, A., Alvarado, M., Artano, K., Martinez, M. P., Mesanza, A., Torre, L., Chuvieco, E., BAMS: A Tool for Supervised Burned Area Mapping Using Landsat Data (2014) Remote Sensing, 6, pp. 12360-12380. , https://doi.org/10.3390/rs61212360
dc.relation.referencesBauduin, S., Clarisse, L., Theunissen, M., George, M., Hurtmans, D., Clerbaux, C., Coheur, P. F., IASI’s sensitivity to near-surface carbon monoxide (CO): Theoretical analyses and retrievals on test cases (2017) Journal of Quantitative Spectroscopy and Radiative Transfer, 189, pp. 428-440. , https://doi.org/10.1016/j.jqsrt.2016.12.022
dc.relation.references(2019), https://www.bbc.com/news/world-latin-america-49415973, Amazon fires increase by 84 in one year-space agency-BBC News. BBC. Retrieved from
dc.relation.referencesBoschetti, L., Roy, D. P., Giglio, L., Huang, H., Zubkova, M., Humber, M. L., Global validation of the collection 6 MODIS burned area product (2019) Remote Sensing of Environment, 235, p. 111490. , https://doi.org/10.1016/j.rse.2019.111490, (October)
dc.relation.referencesBrown, K., (2017) NASA Pinpoints Cause of Earth’s Recent Record Carbon Dioxide Spike, , http://www.nasa.gov/press-release/nasa-pinpoints-cause-of-earth-s-recent-record-carbon-dioxide-spike, National Aeronotics and Space Administration (NASA). Retrieved from
dc.relation.referencesBuis, A., (2019) The Atmosphere: Getting a Handle on Carbon Dioxide – Climate Change: Vital Signs of the Planet, , https://climate.nasa.gov/news/2915/the-atmosphere-getting-a-handle-on-carbon-dioxide/, Retrieved December 6, 2020, from
dc.relation.referencesChave, J., Davies, S. J., Phillips, O. L., Lewis, S. L., Sist, P., Schepaschenko, D., Saatchi, S., Ground Data are Essential for Biomass Remote Sensing Missions (2019) Surveys in Geophysics, 40 (4), pp. 863-880. , https://doi.org/10.1007/s10712-019-09528-w
dc.relation.referencesChristen, A., Atmospheric measurement techniques to quantify greenhouse gas emissions from cities (2014) Urban Climate, 10, pp. 1-20. , https://doi.org/10.1016/j.uclim.2014.04.006
dc.relation.referencesChuvieco, E., Mouillot, F., van der Werf, G. R., San Miguel, J., Tanasse, M., Koutsias, N., Giglio, L., Historical background and current developments for mapping burned area from satellite Earth observation (2019) Remote Sensing of Environment, 225, pp. 45-64. , https://doi.org/10.1016/j.rse.2019.02.013, (November 2018)
dc.relation.referencesChuvieco, E., Opazo, S., Sione, W., Del Valle, H., Anaya, J., Di Bella, C., Libonati, R., Global burned-land estimation in Latin America using MODIS composite data (2008) Ecological Applications, 18 (1), pp. 64-79. , https://doi.org/10.1890/06-2148.1
dc.relation.referencesClerbaux, C., Hadji-Lazaro, J., Turquety, S., George, M., Boynard, A., Pommier, M., Van Damme, M., Tracking pollutants from space: Eight years of IASI satellite observation (2015) Comptes Rendus-Geoscience, 347 (3), pp. 134-144. , https://doi.org/10.1016/j.crte.2015.06.001
dc.relation.referencesCrutzen, P. J., Andreae, M. O., Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles (1990) Science, 250 (4988), pp. 1669-1678. , https://doi.org/10.1126/science.250.4988.1669
dc.relation.referencesDammers, E., Palm, M., Van Damme, M., Vigouroux, C., Smale, D., Conway, S., Erisman, J. W., An evaluation of IASI-NH3 with ground-based Fourier transform infrared spectroscopy measurements (2016) Atmospheric Chemistry and Physics, 16 (16), pp. 10351-10368. , https://doi.org/10.5194/acp-16-10351-2016
dc.relation.referencesDoria-Argumedo, C., Fagundo-Castillo, J. R., Caracterización química de material particulado fracción respirable Pm10 en la atmósfera de Riohacha-La Guajira Colombia (2017) Ingeniería Investigación y Desarrollo, 17 (1), pp. 5-16. , https://doi.org/10.19053/1900771x.v17.n1.2017.4645
dc.relation.referencesEdwards, D. P., Emmons, L. K., Hauglustaine, D. a., Chu, D. a., Gille, J. C., Kaufman, Y. J., Drummond, J. R., Observations of carbon monoxide and aerosols from the Terra satellite: Northern Hemisphere variability (2004) Journal of Geophysical Research D: Atmospheres, 109 (24), pp. 1-17. , https://doi.org/10.1029/2004JD004727
dc.relation.references(2019) Basic Information of Air Emissions Factors and Quantification
dc.relation.references(2019) Basic Information of Air Emissions Factors and Quantification, 2017–2019, , https://www.epa.gov/air-emissions-factors-and-quantification/basic-information-air-emissions-factors-and-quantification, Retrieved from
dc.relation.referencesEvangeliou, N., Balkanski, Y., Eckhardt, S., Cozic, A., Van Damme, M., Coheur, P. F., Hauglustaine, Di, 10-Year Satellite-Constrained Fluxes of Ammonia Improve Performance of Chemistry Transport Models (2021) Atmospheric Chemistry and Physics, 21 (6), pp. 4431-4451. , https://doi.org/10.5194/acp-21-4431-2021
dc.relation.referencesFreitas, S. R., Longo, K. M., Alonso, M. F., Pirre, M., Marecal, V., Grell, G., Sánchez-Gácita, M., PREP-CHEM-SRC – 1.0: a preprocessor of trace gas and aerosol emission fields for regional and global atmospheric chemistry models (2011) Geoscientific Model Development, 4 (2), pp. 419-433. , https://doi.org/10.5194/gmd-4-419-2011
dc.relation.referencesFry, M. M., Naik, V., West, J. J., Schwarzkopf, M. D., Fiore, A. M., Collins, W. J., Zeng, G., The influence of ozone precursor emissions from four world regions on tropospheric composition and radiative climate forcing (2012) Journal of Geophysical Research Atmospheres, 117 (7), pp. 1-16. , https://doi.org/10.1029/2011JD017134
dc.relation.referencesGalloway, J. N., Aber, J. D., Erisman, J. W., Seitzinger, S. P., Howarth, R. W., Cowling, E. B., Cosby, B. J., The Nitrogen Cascade (2003) BioScience, 53 (4), p. 341. , https://doi.org/10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2
dc.relation.referencesGhasemi, A., Zahediasl, S., Normality tests for statistical analysis: A guide for non-statisticians (2012) International Journal of Endocrinology and Metabolism, 10 (2), pp. 486-489. , https://doi.org/10.5812/ijem.3505
dc.relation.referencesGiglio, L., Csiszar, I., Justice, C. O., Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors (2006) Journal of Geophysical Research, 111, pp. 1-12. , https://doi.org/10.1029/2005JG000142, (July 1996)
dc.relation.referencesGiglio, L., Randerson, J. T., Van Der Werf, G. R., Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4) (2013) Journal of Geophysical Research: Biogeosciences, 118 (1), pp. 317-328. , https://doi.org/10.1002/jgrg.20042
dc.relation.referencesGray, E., (2019) Satellite Data Record Shows Climate Change’s Impact on Fires, , https://climate.nasa.gov/news/2912/satellite-data-record-shows-climate-changes-impact-on-fires/, Retrieved December 6, 2020, from
dc.relation.referencesHampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., Stahel, W. A., (1986) Robust Statistics: The Approach Based on Influence Functions, , (J. W. & Sons, Ed). New York
dc.relation.referencesHooghiemstra, P. B., Krol, M. C., Van Leeuwen, T. T., Van Der Werf, G. R., Novelli, P. C., Deeter, M. N., Röckmann, T., Interannual variability of carbon monoxide emission estimates over South America from 2006 to 2010 (2012) Journal of Geophysical Research: Atmospheres, 117 (D15), pp. 1-25. , https://doi.org/10.1029/2012JD017758
dc.relation.referencesHuber, P. J., Ronchetti, E. M., (2009) Robust Statistics, , https://doi.org/10.1002/9780470434697, (Wiley, Ed) (2nd ed)
dc.relation.references(2018) IPCC Special Report on the impacts of global warming of 1.5°C, , http://www.ipcc.ch/report/sr15/, Ipcc-Sr15. Retrieved from
dc.relation.referencesJaffe, L. S., Ambient carbon monoxide and its fate in the atmosphere (1968) Journal of the Air Pollution Control Association, 18 (8), pp. 534-540. , https://doi.org/10.1080/00022470.1968.10469168
dc.relation.referencesJanssens-Maenhout, G., Dentener, F., Aardenne, J. Van, Monni, S., Pagliari, V., Orlandini, L., Keating, T., (2012) EDGAR-HTAP: a harmonized gridded air pollution emission dataset based on national inventories, , https://doi.org/10.2788/14102, Office, Ispra (Italy)
dc.relation.referencesJanssens-Maenhout, G., Petrescu, A. M. R., Muntean, M., Blujdea, V., Verifying Greenhouse Gas Emissions: Methods to Support International Climate Agreements (2011) Greenhouse Gas Measurement and Management, 1 (2), pp. 132-133. , https://doi.org/10.1080/20430779.2011.579358
dc.relation.referencesJones, M. W., Smith, A., Betts, R., Canadell, J. G., Prentice, I. C., Le Quéré, C., Climate change increases the risk of wildfires (2020) Rapid Response Review, pp. 2013-2015. , https://sciencebrief.org/briefs/wildfires, (March 2013), Retrieved from
dc.relation.referencesKaiser, J. W., Heil, a., Andreae, M. O., Benedetti, a., Chubarova, N., Jones, L., Van Der Werf, G. R., Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power (2012) Biogeosciences, 9 (1), pp. 527-554. , https://doi.org/10.5194/bg-9-527-2012
dc.relation.referencesKoenker, R., Confidence Intervals for Regression Quantiles (1994) Asymptotic Statistics, pp. 349-359. , https://doi.org/10.1007/978-3-642-57984-4_29, P. Mandl & M. Hušková (Eds), –)
dc.relation.referencesKoenker, R. W., (2005) Quantile Regression, , https://doi.org/10.1017/CBO9780511754098, (Cambridge University Press, Ed)
dc.relation.referencesKumar, S. S., Hult, J., Picotte, J., Peterson, B., Potential underestimation of satellite fire radiative power retrievals over gas flares and wildland fires (2020) Remote Sensing, 12 (2), pp. 10-14. , https://doi.org/10.3390/rs12020238
dc.relation.referencesLamarque, J. F., Bond, T. C., Eyring, V., Granier, C., Heil, a., Klimont, Z., Van Vuuren, D. P., Historical (1850-2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application (2010) Atmospheric Chemistry and Physics, 10 (15), pp. 7017-7039. , https://doi.org/10.5194/acp-10-7017-2010
dc.relation.referencesLangmann, B., Duncan, B., Textor, C., Trentmann, J., van der Werf, G. R., Vegetation fire emissions and their impact on air pollution and climate (2009) Atmospheric Environment, 43 (1), pp. 107-116. , https://doi.org/10.1016/j.atmosenv.2008.09.047
dc.relation.referencesLees, K. J., Quaife, T., Artz, R. R. E., Khomik, M., Clark, J. M., Potential for using remote sensing to estimate carbon fluxes across northern peatlands – A review (2018) Science of the Total Environment, 615, pp. 857-874. , https://doi.org/10.1016/j.scitotenv.2017.09.103
dc.relation.referencesLevine, J. S., Cofer, W. R., Pinto, J. P., Chapter 14. Biomass Burning (2001) Atmospheric methane: source, sinks, and role in Global Change, 113, pp. 299-313. , http://earthobservatory.nasa.gov/Features/BiomassBurning/, NATO ASI series. Retrieved from
dc.relation.referencesLibonati, R., DaCamara, C., Setzer, A. W., Morelli, F., Melchiori, A. E., Cândido, P. de A., Jesús, S. C., Validating MODIS burned area products over Cerrado region (2015) XVII Simpósio Brasileiro de Sensoriamento Remoto-SBSR, pp. 6381-6388. , de –)
dc.relation.referencesLimpert, E., Stahel, W. A., Problems with using the normal distribution-and ways to improve quality and efficiency of data analysis (2011) PLoS ONE, 6 (7). , https://doi.org/10.1371/journal.pone.0021403
dc.relation.referencesLiu, Y. Y., van Dijk, A. I. J. M., de Jeu, R. a M., Canadell, J. G., McCabe, M. F., Evans, J. P., Wang, G., Recent reversal in loss of global terrestrial biomass (2015) Nature Climate Change, 5, pp. 1-5. , https://doi.org/10.1038/nclimate2581, (May)
dc.relation.referencesLöndahl, J., Swietlicki, E., Lindgren, E., Loft, S., Aerosol exposure versus aerosol cooling of climate: What is the optimal emission reduction strategy for human health? (2010) Atmospheric Chemistry and Physics, 10 (19), pp. 9441-9449. , https://doi.org/10.5194/acp-10-9441-2010
dc.relation.referencesLongo, K. M., Freitas, S. R., Andreae, M. O., Setzer, a., Prins, E., Artaxo, P., The Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) – Part 2: Model sensitivity to the biomass burning inventories (2010) Atmospheric Chemistry and Physics, 10 (13), pp. 5785-5795. , https://doi.org/10.5194/acp-10-5785-2010
dc.relation.referencesMalhi, Y., Rowland, L., Aragão, L. E. O. C., Fisher, R. A., New insights into the variability of the tropical land carbon cycle from the El Niño of 2015/2016 (2018) Philosophical Transactions of the Royal Society B: Biological Sciences, 373 (1760). , https://doi.org/10.1098/rstb.2017.0298
dc.relation.referencesMasek, J., Vermote, E. F., Saleous, N. E., Wolfe, R., Hall, F. G., Huemmrich, K. F., Lim, T., A Landsat Surface Reflectance Dataset for North America, 1990–2000 (2006) IEEE Geoscience and Remote Sensing Letters, 3 (1), pp. 68-72. , https://doi.org/10.1109/LGRS.2005.857030
dc.relation.referencesMasek, J., Vermote, E. F., Saleous, N., Wolfe, R., Hall, F. G., Huemmrich, F., Lim, T. K., (2013) LEDAPS Calibration, Reflectance, Atmospheric Correction Preprocessing Code, , https://doi.org/10.3334/ORNLDAAC/1146, Oak Ridge National Laboratory Distributed Active Archive Center. Tennessee, U.S.A
dc.relation.referencesMavroidis, I., Chaloulakou, a., Long-term trends of primary and secondary NO2 production in the Athens area. Variation of the NO2/NOx ratio (2011) Atmospheric Environment, 45 (38), pp. 6872-6879. , https://doi.org/10.1016/j.atmosenv.2010.11.006
dc.relation.referencesMelton, J. R., Wania, R., Hodson, E. L., Poulter, B., Ringeval, B., Spahni, R., Kaplan, J. O., Present state of global wetland extent and wetland methane modelling: conclusions from a model intercomparison project (WETCHIMP) (2012) Biogeosciences Discussions, 9 (8), pp. 11577-11654. , https://doi.org/10.5194/bgd-9-11577-2012
dc.relation.referencesMieville, a., Granier, C., Liousse, C., Guillaume, B., Mouillot, F., Lamarque, J.-F., Pétron, G., Emissions of gases and particles from biomass burning during the 20th century using satellite data and an historical reconstruction (2010) Atmospheric Environment, 44 (11), pp. 1469-1477. , https://doi.org/10.1016/j.atmosenv.2010.01.011
dc.relation.referencesMonks, P. S., Granier, C., Fuzzi, S., Stohl, A., Williams, M. L., Akimoto, H., von Glasow, R., Atmospheric composition change-global and regional air quality (2009) Atmospheric Environment, 43 (33), pp. 5268-5350. , https://doi.org/10.1016/j.atmosenv.2009.08.021
dc.relation.referencesMoreira, D. S., Freitas, S. R., Bonatti, J. P., Mercado, L. M., Rosário, N. M. É., Longo, K. M., Gatti, L. V., Coupling between the JULES land-surface scheme and the CCATT-BRAMS atmospheric chemistry model (JULES-CCATT-BRAMS1.0): applications to numerical weather forecasting and the CO2 budget in South America (2013) Geoscientific Model Development, 6 (4), pp. 1243-1259. , https://doi.org/10.5194/gmd-6-1243-2013
dc.relation.referencesMouillot, F., Schultz, M. G., Yue, C., Cadule, P., Tansey, K., Ciais, P., Chuvieco, E., Ten years of global burned area products from spaceborne remote sensing-A review: Analysis of user needs and recommendations for future developments (2014) International Journal of Applied Earth Observation and Geoinformation, 26 (1), pp. 64-79. , https://doi.org/10.1016/j.jag.2013.05.014
dc.relation.referencesOpazo, S., Chuvieco, E., Análisis geográfico de áreas quemadas en Sudamérica (2013) Geofocus, 13 (2), pp. 1-24. , https://doi.org/10.1104/pp.104.051110.3582
dc.relation.referencesPadilla, M., Olofsson, P., Stehman, S. V, Tansey, K., Chuvieco, E., Stratification and sample allocation for reference burned area data (2017) Remote Sensing of Environment, 203, pp. 240-255. , https://doi.org/10.1016/j.rse.2017.06.041
dc.relation.referencesPadilla, M., Stehman, S. V., Chuvieco, E., Validation of the 2008 MODIS-MCD45 global burned area product using stratified random sampling (2014) Remote Sensing of Environment, 144, pp. 187-196. , https://doi.org/10.1016/j.rse.2014.01.008
dc.relation.referencesPadilla, M., Stehman, S. V., Ramo, R., Corti, D., Hantson, S., Oliva, P., Chuvieco, E., Comparing the accuracies of remote sensing global burned area products using stratified random sampling and estimation (2015) Remote Sensing of Environment, 160, pp. 114-121. , https://doi.org/10.1016/j.rse.2015.01.005, (April)
dc.relation.referencesPalmer, P. I., Feng, L., Baker, D., Chevallier, F., Bösch, H., Somkuti, P., Net carbon emissions from African biosphere dominate pan-tropical atmospheric CO2 signal (2019) Nature Communications, 10 (1), pp. 1-9. , https://doi.org/10.1038/s41467-019-11097-w
dc.relation.referencesPalomino, S., Anaya, J. A., Evaluation of the Causes of Error in the Mcd45 Burned-Area Product for the Savannas of Northern South America (2012) Dyna-Colombia, 79 (176), pp. 35-44
dc.relation.referencesPechony, O., Shindell, D. T., Faluvegi, G., Direct top-down estimates of biomass burning CO emissions using TES and MOPITT versus bottom-up GFED inventory (2013) Journal of Geophysical Research Atmospheres, 118 (14), pp. 8054-8066. , https://doi.org/10.1002/jgrd.50624
dc.relation.referencesPierre-Louis, K., (2019) The Amazon, Siberia, Indonesia: A World of Fire, , https://www.nytimes.com/2019/08/28/climate/fire-amazon-africa-siberia-worldwide.html, The New York Times. Retrieved from
dc.relation.referencesPortnoy, S., Koenker, R., (1997) The Gaussian hare and the Laplacian tortoise: computability of squared-error versus absolute-error estimators, pp. 279-300. , https://doi.org/10.1214/ss/1030037960
dc.relation.referencesProsperi, P., Bloise, M., Tubiello, F. N., Conchedda, G., Rossi, S., Boschetti, L., Bernoux, M., New estimates of greenhouse gas emissions from biomass burning and peat fires using MODIS Collection 6 burned areas (2020) Climatic Change, 161 (3), pp. 415-432. , https://doi.org/10.1007/s10584-020-02654-0
dc.relation.referencesRodriguez-Montellano, A., Libonati, R., Melchiori, E., Sensibilidad en la detección de áreas quemadas en tres ecosistemas vegetales de Bolivia, utilizando tres productos regionales (2015) XVII Simpósio Brasileiro de Sensoriamento Remoto-SBSR, 1, pp. 1663-1670
dc.relation.referencesRodríguez-Veiga, P., Wheeler, J., Louis, V., Tansey, K., Balzter, H., Quantifying Forest Biomass Carbon Stocks From Space (2017) Current Forestry Reports, 3, pp. 1-18. , https://doi.org/10.1007/s40725-017-0052-5
dc.relation.referencesRousseeuw, P. J., Huber, M., Recent developments in PROGRESS (1997) L1-Statistical Procedures and Related Topics. Dodge, IMS Lecture Notes, 31, pp. 201-214
dc.relation.referencesRousseeuw, P. J., Leroy, A. M., (2005) Robust Regression and Outlier Detection, , https://books.google.com.co/books?id=woaH_73s-MwC, (John Wiley & Sons, Ed). Wiley. Retrieved from
dc.relation.referencesSaatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T. A., Salas, W., Morel, A., Benchmark map of forest carbon stocks in tropical regions across three continents (2011) Proceedings of the National Academy of Sciences of the United States of America, 108 (24), pp. 9899-9904. , https://doi.org/10.1073/pnas.1019576108
dc.relation.referencesSantoro, M., Beaudoin, A., Beer, C., Cartus, O., Fransson, J. E. S., Hall, R. J., Wegmüller, U., Forest growing stock volume of the northern hemisphere: Spatially explicit estimates for 2010 derived from Envisat ASAR (2015) Remote Sensing of Environment, 168, pp. 316-334. , https://doi.org/10.1016/j.rse.2015.07.005
dc.relation.referencesSeiler, W., Crutzen, P. J., Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning (1980) Climatic Change, 2 (3), pp. 207-247. , https://doi.org/10.1007/BF00137988
dc.relation.referencesShi, Y., Matsunaga, T., Saito, M., Yamaguchi, Y., Chen, X., Comparison of global inventories of CO2 emissions from biomass burning during 2002-2011 derived from multiple satellite products (2015) Environmental Pollution, 206, pp. 479-487. , https://doi.org/10.1016/j.envpol.2015.08.009
dc.relation.referencesShi, Y., Matsunaga, T., Yamaguchi, Y., High-Resolution Mapping of Biomass Burning Emissions in Three Tropical Regions (2015) Environmental Science and Technology, 49 (18), pp. 10806-10814. , https://doi.org/10.1021/acs.est.5b01598
dc.relation.referencesSimões Amaral, S., Andrade de Carvalho, J., Martins Costa, M., Pinheiro, C., Particulate Matter Emission Factors for Biomass Combustion (2016) Atmosphere, 7 (11), p. 141. , https://doi.org/10.3390/atmos7110141
dc.relation.referencesSolaun, K., Sopelana, A., Arraibi, E., Pérez, M., Series CO2: Black Carbon y sus efectos en el clima (2014), 52. , https://www.factorco2.com/comun/docs/131-Series%20CO2_Black%20Carbon_Factor%20CO2_20140613.pdf, Factor CO2, Retrieved from
dc.relation.referencesStahl, S., Evolution of the Normal Distribution (2014) Mathematics magazine, pp. 96-113. , https://www.maa.org/sites/default/files/pdf/upload_library/22/Allendoerfer/stahl96.pdf, Retrieved from
dc.relation.referencesSchulze, E.D., Air pollution and forest decline in a spruce (Picea abies) forest (1989) Science, 244 (7), p. 776. , https://doi.org/10.1126/science.244.4906.776
dc.relation.referencesTie, X., Chandra, S., Ziemke, J. R., Granier, C., Brasseur, G. P., Satellite measurements of tropospheric column O3 and NO 2 in eastern and southeastern asia: Comparison with a global model (MOZART-2) (2007) Journal of Atmospheric Chemistry, 56 (2), pp. 105-125. , https://doi.org/10.1007/s10874-006-9045-7
dc.relation.referencesUrbanski, S. P., Hao, W. M., Nordgren, B., The wildland fire emission inventory: Western United States emission estimates and an evaluation of uncertainty (2011) Atmospheric Chemistry and Physics, 11 (24), pp. 12973-13000. , https://doi.org/10.5194/acp-11-12973-2011
dc.relation.referencesValencia, G. M., Anaya, J. A., Caro-Lopera, F. J., Implementación y evaluación del modelo Landsat Ecosystem Disturbance Adaptive Processing System ( LEDAPS ): estudio de caso en los Andes colombianos (2016) Revista de Teledetección, 46 (46), pp. 83-101. , https://doi.org/10.4995/raet.2016.3582
dc.relation.referencesValencia, G. M., Anaya, J. A., Ramo, R., Velásquez, É. A., Francisco, J., About Validation-Comparison of Burned Area Products (2018) Remote Sensing, 12, pp. 1-39. , 2020a
dc.relation.referencesvan der Werf, G. R., Randerson, J. T., Giglio, L., Leeuwen, T. T. Van, Chen, Y., Collatz, G. J., Kasibhatla, P. S., Global fire emissions estimates during 1997 – 2016 (2017) Earth System Science Data, 9, pp. 697-720. , https://doi.org/10.5194/essd-9-697-2017
dc.relation.referencesVasconcelos, S. S., Fearnside, P. M., Graça, P. M. L. D. A., Nogueira, E. M., Oliveira, L. C. De, Figueiredo, E. O., Forest fires in southwestern Brazilian Amazonia: Estimates of area and potential carbon emissions (2013) Forest Ecology and Management, 291, pp. 199-208. , https://doi.org/10.1016/j.foreco.2012.11.044, De
dc.relation.referencesVoiland, A., (2015) Fourteen years of carbon monoxide from MOPITT – Climate Change: Vital Signs of the Planet, , https://climate.nasa.gov/news/2291/fourteen-years-of-carbon-monoxide-from-mopitt/, Retrieved December 6, 2020, from
dc.relation.referencesvon Bobrutzki, K., Braban, C., Famulari, D., Jones, S., Blackall, T., Smith, T. E. L., Nemitz, E., (2010) Field inter-comparison of eleven atmospheric ammonia measurement techniques, pp. 91-112. , https://doi.org/10.5194/amtd-2-1783-2009
dc.relation.referencesWang, J., Christopher, S. A., Intercomparison between satellite-derived aerosol optical thickness and PM 2.5 mass: Implications for air quality studies (2003) Geophysical Research Letters, 30 (21), p. 2095. , https://doi.org/10.1029/2003GL018174
dc.relation.referencesWhitburn, S., Van Damme, M., Kaiser, J. W. W., Van Der Werf, G. R. R., Turquety, S., Hurtmans, D., Coheur, P.-F. F., Ammonia emissions in tropical biomass burning regions: Comparison between satellite-derived emissions and bottom-up fire inventories (2014) Atmospheric Environment, 121, pp. 42-54. , https://doi.org/10.1016/j.atmosenv.2015.03.015
dc.relation.referencesWhitburn, Simon, Van Damme, M., Clarisse, L., Hurtmans, D., Clerbaux, C., Coheur, P. F., IASI-derived NH3 enhancement ratios relative to CO for the tropical biomass burning regions (2017) Atmospheric Chemistry and Physics, 17 (19), pp. 12239-12252. , https://doi.org/10.5194/acp-17-12239-2017
dc.relation.referencesWiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A., Orlando, J. J., Soja, A. J., The Fire INventory from NCAR (FINN) – a high resolution global model to estimate the emissions from open burning (2011) Geoscientific Model Development Discussions, 3 (4), pp. 2439-2476. , https://doi.org/10.5194/gmdd-3-2439-2010
dc.relation.referencesWilliams, A. P., Abatzoglou, J. T., Gershunov, A., Guzman-Morales, J., Bishop, D. A., Balch, J. K., Lettenmaier, D. P., Observed Impacts of Anthropogenic Climate Change on Wildfire in California (2019) Earth’s Future, 7 (8), pp. 892-910. , https://doi.org/10.1029/2019ef001210
dc.relation.referencesWu, Y., Gu, B., Erisman, J. W., Reis, S., Fang, Y., Lu, X., Zhang, X., PM2.5 pollution is substantially affected by ammonia emissions in China (2016) Environmental Pollution, 218, pp. 86-94. , https://doi.org/10.1016/j.envpol.2016.08.027
dc.relation.referencesYang, J., Gong, P., Fu, R., Zhang, M., Chen, J., Liang, S., Dickinson, R., The role of satellite remote sensing in climate change studies (2013) Nature Climate Change, 3 (10), pp. 875-883. , https://doi.org/10.1038/nclimate1908
dc.relation.referencesYuSheng, S., Matsunaga, T., Yamaguchi, Y., High-resolution mapping of biomass burning emissions in three tropical regions (2015) Environmental Science & Technology, 49 (18), pp. 10806-10814. , https://doi.org/10.1021/acs.est.5b01598
dc.relation.referencesZuluaga, O., Patiño, J. E., Valencia, G. M., Modelos implementados en el análisis de series de tiempo de temperatura superficial e índices de vegetación: una propuesta taxonómica en el contexto de cambio climático global (2021) Revista de Geografía Norte Grande, 78, pp. 323-344. , https://doi.org/http://dx.doi.org/10.4067/S0718-34022021000100323
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem