Show simple item record

dc.contributor.authorTobón C
dc.contributor.authorDurango-Giraldo G
dc.contributor.authorUgarte J.P.
dc.date.accessioned2022-09-14T14:33:30Z
dc.date.available2022-09-14T14:33:30Z
dc.date.created2021
dc.identifier.isbn9783030867010
dc.identifier.issn18650929
dc.identifier.urihttp://hdl.handle.net/11407/7403
dc.descriptionThe Exposure to atmospheric pollutants, such as carbon monoxide (CO), promotes the appearance of cardiovascular diseases. Studies have shown that CO blocks calcium channels, leading to a decrease of the ICaL current and to a shortening of the action potential duration (APD); favoring the generation of cardiac arrhythmias. The aim of this work is to study the CO effects, at different concentrations, on the atrial and ventricular tissues using computational simulations. An equation of the CO effect on ICaL was developed. It was included in two mathematical models of human atrial and ventricular cells, under normal physiological conditions. Atrial and ventricular 2D models were developed to evaluate the CO effect on the generation of reentries as an arrhythmogenic mechanism. The results show that CO blocks the ICaL current in a greater fraction as its concentration increases, causing APD shortening. Such effect is larger in atrial cardiomycytes. Arrhythmic events (rotors) were generated at the high CO concentration in atrial tissue. In ventricular tissue it was not possible to generate rotors. This study provides a first step in investigating the proarrhythmic effects of CO in healthy people. © 2021, Springer Nature Switzerland AG.eng
dc.language.isoeng
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85116812079&doi=10.1007%2f978-3-030-86702-7_14&partnerID=40&md5=38a5b8340518ffe70cb68d860db3b016
dc.sourceCommunications in Computer and Information Science
dc.titleCarbon Monoxide Effect on Human Cardiac Tissue. In Silico Study
dc.typeConference Paper
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicas
dc.type.spaDocumento de conferencia
dc.identifier.doi10.1007/978-3-030-86702-7_14
dc.subject.keywordAction potentialeng
dc.subject.keywordCarbon monoxideeng
dc.subject.keywordIn silico modelseng
dc.subject.keywordL-type calcium currenteng
dc.subject.keywordReentrieseng
dc.subject.keywordCalciumeng
dc.subject.keywordDiseaseseng
dc.subject.keywordPhysiological modelseng
dc.subject.keywordTissueeng
dc.subject.keyword'currenteng
dc.subject.keywordAction potential durationseng
dc.subject.keywordAction-potentialseng
dc.subject.keywordAtmospheric pollutantseng
dc.subject.keywordCalcium currenteng
dc.subject.keywordCardiac tissueseng
dc.subject.keywordIn-silicoeng
dc.subject.keywordIn-silico modelseng
dc.subject.keywordL-type calcium currenteng
dc.subject.keywordSilico studieseng
dc.subject.keywordCarbon monoxideeng
dc.relation.citationvolume1431 CCIS
dc.relation.citationstartpage160
dc.relation.citationendpage170
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationTobón, C., MATBIOM, Universidad de Medellín, Medellín, Colombia
dc.affiliationDurango-Giraldo, G., MATBIOM, Universidad de Medellín, Medellín, Colombia
dc.affiliationUgarte, J.P., GIMSC, Universidad de San Buenaventura, Medellín, Colombia
dc.relation.referencesPublishing, O.E.C.D., (2014) The Cost of Air Pollution. Health Impacts of Road Transport, , OECD
dc.relation.referencesSanchez, S., Castillo, J., Green, J., Klakamp, J., Air pollution and health in Latin America and the Caribbean: An overview (2016) Air Quality & Health Showcase. Clean Air Institute, Washington
dc.relation.referencesOECD Environmental Outlook to 2050: The Consequences of Inaction
dc.relation.references(2011) European Environment Agency: Revealing the Costs of Air Pollution from Industrial Facilities in Europe, , https://doi.org/10.2800/84800
dc.relation.referencesMiller, K.A., Long-term exposure to air pollution and incidence of cardiovascular events in women (2007) N. Engl. J. Med., 356, pp. 447-458. , https://doi.org/10.1056/NEJMoa054409
dc.relation.referencesBrook, R.D., (2004) Air Pollution and Cardiovascular Disease: A Statement for Healthcare Professionals from the Expert Panel on Population and Prevention Science of the American Heart Association, , https://doi.org/10.1161/01.CIR.0000128587.30041.C8
dc.relation.referencesFinkelstein, M., Pollution-related mortality and educational level (2002) JAMA, 288, p. 830. , https://doi.org/10.1001/jama.288.7.828
dc.relation.referencesPope, C.A., Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution (2002) JAMA, 287, p. 1132. , https://doi.org/10.1001/jama.287.9.1132
dc.relation.references(2014) UNEP Year Book 2014 Emerging Issues Update. Air Pollution: World’s Worst Environmental Health Risk. United Nations Environment Programme, , Environment for Development, Nairobi
dc.relation.referencesLink, M.S., Acute exposure to air pollution triggers atrial fibrillation (2013) J. Am. Coll. Cardiol., 62, pp. 816-825. , https://doi.org/10.1016/j.jacc.2013.05.043
dc.relation.referencesU.S. Environmental Protection Agency: Air Quality Planning & Standards (2015)
dc.relation.referencesHenry, C.R., Satran, D., Lindgren, B., Adkinson, C., Nicholson, C.I., Henry, T.D., Myocardial injury and long-term mortality following moderate to severe carbon monoxide poisoning (2006) Am. Med. Assoc., 295, pp. 398-402
dc.relation.referencesSamoli, E., Short-term effects of carbon monoxide on mortality: An analysis within the APHEA project (2007) Environ. Health Perspect., 115, pp. 1578-1583. , https://doi.org/10.1289/ehp.10375
dc.relation.referencesAbramochkin, D.V., Haertdinov, N.N., Porokhnya, M.V., Zefirov, A.L., Sitdikova, G.F., Carbon monoxide affects electrical and contractile activity of rat myocardium (2011) J. Biomed. Sci., 18, p. 40. , https://doi.org/10.1186/1423-0127-18-40
dc.relation.referencesScragg, J.L., Dallas, M.L., Wilkinson, J.A., Varadi, G., Peers, C., Carbon monoxide inhibits L-type Ca 2+ channels via redox modulation of key cysteine residues by mitochondrial reactive oxygen species (2008) J. Biol. Chem., 283, pp. 24412-24419. , https://doi.org/10.1074/jbc.M803037200
dc.relation.referencesDinanian, S., Downregulation of the calcium current in human right atrial myocytes from patients in sinus rhythm but with a high risk of atrial fibrillation (2008) Eur. Heart J., 29, pp. 1190-1197. , https://doi.org/10.1093/eurheartj/ehn140
dc.relation.referencesTobon, C., Saiz, J., (2018) Modelado Y simulación 3D De La fibrilación Auricular Y Su Tratamiento quirúrgico, , Medellín
dc.relation.referencesCourtemanche, M., Ramirez, R.J., Nattel, S., Ionic targets for drug therapy and atrial fibrillation-induced electrical remodeling: Insights from a mathematical model (1999) Cardiovasc. Res, 42, pp. 477-489. , https://doi.org/10.1016/S0008-6363(99)00034-6
dc.relation.referencesDutta, S., Optimization of an in silico cardiac cell model for proarrhythmia risk assessment (2017) Front. Physiol., 8 (1-15). , https://doi.org/10.3389/fphys.2017.00616
dc.relation.referencesHansson, A., Right atrial free wall conduction velocity and degree of anisotropy in patients with stable sinus rhythm studied during open heart surgery (1998) Eur. Heart J., 19, pp. 293-300. , https://doi.org/10.1053/euhj.1997.0742
dc.relation.referencesUgarte, J., Tobón, C., Orozco-Duque, A., Entropy mapping approach for functional reentry detection in atrial fibrillation: An in-silico study (2019) Entropy, 21, p. 194. , https://doi.org/10.3390/e21020194
dc.relation.referencesTobón, C., (2010) Modelización Y Evaluación De Factores Que Favorecen Las Arritmias Auriculares Y Su Tratamiento Mediante Técnicas Quirúrgicas. Estudio De Simulación
dc.relation.referencesBray, M.A., Lin, S.F., Aliev, R.R., Roth, B.J., Wikswo, J.P., Experimental and theoretical analysis of phase singularity dynamics in cardiac tissue (2001) J. Cardiovasc. Electrophysiol., 12, pp. 716-722. , https://doi.org/10.1046/j.1540-8167.2001.00716.x
dc.relation.referencesBell, M.L., Peng, R.D., Dominici, F., Samet, J.M., Emergency hospital admissions for cardiovascular diseases and ambient levels of carbon monoxide results for 126 united states urban counties, 1999–2005 (2009) Circulation, 120, pp. 949-955. , https://doi.org/10.1161/CIRCULATIONAHA.109.851113
dc.relation.referencesStieb, D.M., Szyszkowicz, M., Rowe, B.H., Leech, J.A., Air pollution and emergency department visits for cardiac and respiratory conditions: A multi-city time-series analysis (2009) Environ. Heal., 8. , https://doi.org/10.1186/1476-069X-8-25
dc.relation.referencesBurnett, R.T., Cakmak, S., Brook, J.R., Krewski, D., The role of particulate size and chemistry in the association between summertime ambient air pollution and hospitalization for cardiorespiratory diseases (1997) Environ. Health Perspect., 105, pp. 614-620. , https://doi.org/10.1289/ehp.97105614
dc.relation.referencesAndre, L., et al.: Carbon monoxide pollution promotes cardiac remodeling and ventricular arrhythmia in healthy rats. Am. J. Respir. Crit. Care Med. 181, 587–595 (2010). https://doi. org/10.1164/rccm.200905-0794OC
dc.relation.referencesKeurs, T., Henk, E.D.J., Boyden, P.A., Calcium and arrhythmogenesis (2007) Physiol. Rev., 87, pp. 457-506. , https://doi.org/10.1152/physrev.00011.2006
dc.relation.referencesMeyer, G., Simulated urban carbon monoxide air pollution exacerbates rat heart ischemia-reperfusion injury (2010) Physiol. Hear. Circ. Physiol., 298, pp. H1445-H1453
dc.relation.referencesMeyer, G., Carbon monoxide increases inducible NOS expression that mediates CO-induced myocardial damage during ischemia-reperfusion (2015) Am. J. Physiol. Hear. Circ. Physiol., 308, pp. H759-H767. , https://doi.org/10.1152/ajpheart.00702.2014
dc.relation.referencesWilkinson, W.J., Kemp, P.J., Carbon monoxide: An emerging regulator of ion channels (2011) J. Physiol., 589, pp. 3055-3062. , https://doi.org/10.1113/jphysiol.2011.206706
dc.relation.referencesAntzelevitch, C., Burashnikov, A., Overview of basic mechanisms of cardiac arrhythmia (2011) Card. Electrophysiol. Clin., 3, pp. 23-45. , https://doi.org/10.1016/j.ccep.2010.10.012
dc.relation.referencesVaquero, M., Calvo, D., Jalife, J., Cardiac fibrillation: From ion channels to rotors in the human heart (2008) Hear. Rhythm., 5, pp. 872-879. , https://doi.org/10.1016/j.hrthm.2008.02.034
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/other
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín
dc.relation.ispartofconference8th Workshop on Engineering Applications, WEA 2021


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record