REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparison of machine learning parametric and non-parametric techniques for determining soil moisture: Case study at las palmas andean basin

Thumbnail
Share this
Date
2021
Author
López-Bermeo C
González-Palacio M
Sepúlveda-Cano L
Montoya-Ramírez R
Hidalgo-Montoya C.

Citación

       
TY - GEN T1 - Comparison of machine learning parametric and non-parametric techniques for determining soil moisture: Case study at las palmas andean basin Y1 - 2021 UR - http://hdl.handle.net/11407/7410 PB - ASTES Publishers AB - Soil moisture is one of the most important variables to monitor in agriculture. Its analysis gives insights about strategies to utilize better a particular area regarding its use, i.e., pasture for cows (or similar), production forests, or even to answer what crops should be planted. The vertical structure of the soil moisture plays an important role in several physical processes such as vegetation growth, infiltration process, soil – atmosphere interactions, among others. Despite a set of tools are currently being evaluated and used to monitor soil moisture, including satellite images and in-situ sensor, several drawbacks are still persisting. In situ data is expensive for high spatial monitoring and vertical measurements and satellite data have low spatial resolution and only retrieval information of soil moisture for the top few centimeters of the soil. The present work shows an experiment design for collecting soil moisture data in a specific Andean basin with in-situ sensors in different kinds of soils as a promising tool for reproducing soil moisture profiles in areas with scarce information, employing only surface soil moisture and simple soil characteristics. Collected data is used to train machine learning supervised parametric (Multiple Linear Regression - MLR) and non-parametric models (Artificial Neural Networks - ANNs and Support Vector Regression - SVR) for soil moisture estimation in different depths. Conclusions show that parametric methods do not meet goodness of fit assumptions; so, non-parametric methods must be considered, and SVR outperforms parametric methods regarding regression accuracy allowing to reproduce the soil moisture content profiles. The proposed SVR model represents a high potential tool to replicate the soil moisture profiles using only surface information from remote sensing or in-situ data. © 2021 ASTES Publishers. All rights reserved. ER - @misc{11407_7410, author = {}, title = {Comparison of machine learning parametric and non-parametric techniques for determining soil moisture: Case study at las palmas andean basin}, year = {2021}, abstract = {Soil moisture is one of the most important variables to monitor in agriculture. Its analysis gives insights about strategies to utilize better a particular area regarding its use, i.e., pasture for cows (or similar), production forests, or even to answer what crops should be planted. The vertical structure of the soil moisture plays an important role in several physical processes such as vegetation growth, infiltration process, soil – atmosphere interactions, among others. Despite a set of tools are currently being evaluated and used to monitor soil moisture, including satellite images and in-situ sensor, several drawbacks are still persisting. In situ data is expensive for high spatial monitoring and vertical measurements and satellite data have low spatial resolution and only retrieval information of soil moisture for the top few centimeters of the soil. The present work shows an experiment design for collecting soil moisture data in a specific Andean basin with in-situ sensors in different kinds of soils as a promising tool for reproducing soil moisture profiles in areas with scarce information, employing only surface soil moisture and simple soil characteristics. Collected data is used to train machine learning supervised parametric (Multiple Linear Regression - MLR) and non-parametric models (Artificial Neural Networks - ANNs and Support Vector Regression - SVR) for soil moisture estimation in different depths. Conclusions show that parametric methods do not meet goodness of fit assumptions; so, non-parametric methods must be considered, and SVR outperforms parametric methods regarding regression accuracy allowing to reproduce the soil moisture content profiles. The proposed SVR model represents a high potential tool to replicate the soil moisture profiles using only surface information from remote sensing or in-situ data. © 2021 ASTES Publishers. All rights reserved.}, url = {http://hdl.handle.net/11407/7410} }RT Generic T1 Comparison of machine learning parametric and non-parametric techniques for determining soil moisture: Case study at las palmas andean basin YR 2021 LK http://hdl.handle.net/11407/7410 PB ASTES Publishers AB Soil moisture is one of the most important variables to monitor in agriculture. Its analysis gives insights about strategies to utilize better a particular area regarding its use, i.e., pasture for cows (or similar), production forests, or even to answer what crops should be planted. The vertical structure of the soil moisture plays an important role in several physical processes such as vegetation growth, infiltration process, soil – atmosphere interactions, among others. Despite a set of tools are currently being evaluated and used to monitor soil moisture, including satellite images and in-situ sensor, several drawbacks are still persisting. In situ data is expensive for high spatial monitoring and vertical measurements and satellite data have low spatial resolution and only retrieval information of soil moisture for the top few centimeters of the soil. The present work shows an experiment design for collecting soil moisture data in a specific Andean basin with in-situ sensors in different kinds of soils as a promising tool for reproducing soil moisture profiles in areas with scarce information, employing only surface soil moisture and simple soil characteristics. Collected data is used to train machine learning supervised parametric (Multiple Linear Regression - MLR) and non-parametric models (Artificial Neural Networks - ANNs and Support Vector Regression - SVR) for soil moisture estimation in different depths. Conclusions show that parametric methods do not meet goodness of fit assumptions; so, non-parametric methods must be considered, and SVR outperforms parametric methods regarding regression accuracy allowing to reproduce the soil moisture content profiles. The proposed SVR model represents a high potential tool to replicate the soil moisture profiles using only surface information from remote sensing or in-situ data. © 2021 ASTES Publishers. All rights reserved. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
Soil moisture is one of the most important variables to monitor in agriculture. Its analysis gives insights about strategies to utilize better a particular area regarding its use, i.e., pasture for cows (or similar), production forests, or even to answer what crops should be planted. The vertical structure of the soil moisture plays an important role in several physical processes such as vegetation growth, infiltration process, soil – atmosphere interactions, among others. Despite a set of tools are currently being evaluated and used to monitor soil moisture, including satellite images and in-situ sensor, several drawbacks are still persisting. In situ data is expensive for high spatial monitoring and vertical measurements and satellite data have low spatial resolution and only retrieval information of soil moisture for the top few centimeters of the soil. The present work shows an experiment design for collecting soil moisture data in a specific Andean basin with in-situ sensors in different kinds of soils as a promising tool for reproducing soil moisture profiles in areas with scarce information, employing only surface soil moisture and simple soil characteristics. Collected data is used to train machine learning supervised parametric (Multiple Linear Regression - MLR) and non-parametric models (Artificial Neural Networks - ANNs and Support Vector Regression - SVR) for soil moisture estimation in different depths. Conclusions show that parametric methods do not meet goodness of fit assumptions; so, non-parametric methods must be considered, and SVR outperforms parametric methods regarding regression accuracy allowing to reproduce the soil moisture content profiles. The proposed SVR model represents a high potential tool to replicate the soil moisture profiles using only surface information from remote sensing or in-situ data. © 2021 ASTES Publishers. All rights reserved.
URI
http://hdl.handle.net/11407/7410
Collections
  • Indexados Scopus [2005]
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMView statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Biblioteca
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com